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Abstract

ASTRAL is a formal specification language for real-time systems.  It is intended to support formal software

development and, therefore, has been formally defined.  The structuring mechanisms in ASTRAL allow one to build

modularized specifications of complex systems with layering.  A real-time system is modeled by a collection of state

machine specifications and a single global specification.  

This paper discusses the ASTRAL Software Development Environment (SDE), which is an integrated set of design

and analysis tools based on the ASTRAL formal framework.  The tools that make up the support environment are a

syntax-directed editor, a specification processor, a verification condition generator, a browser kit, a model checker,

and a mechanical theorem prover.



1

1.  Introduction

The success of any language, be it for implementations or specifications, is very often directly related to the

availability and quality of tools that support it.  Without quality supporting tools, the time and expense of wading

through multiple technical papers and reference manuals to grasp the power and subtleties of a language may cause

developers to be unwilling to use it.  However, with the availability of tools, the payoff becomes much greater, since

a large portion of the information contained in the documents can be directly incorporated into the tools making the

language more intuitive and easier to use.  More importantly, the development process becomes much less

susceptible to human error by significantly reducing the amount of work the user needs to perform manually.  Since

the goal of formal methods is to help implementers prevent errors in system design, it is only appropriate that

formal specifiers be supported by tools designed along the same theme, which help them develop specifications

without error.  This is particularly relevant when working with large systems where the amount of work may

overwhelm even the most polished formal specifier.  In addition, many specification languages that feel relatively

intuitive when working with small examples may quickly become unwieldy when applied to larger systems.  For

this reason, it is very desirable to provide the specifier with a set of tools that eliminates as much of the burden of

specifying and verifying large systems as possible.

Integrated development environments, which combine tools such as syntax-directed editors, verification condition

generators (VCGs), and specification processors, offer increases in efficiency and correctness over standalone versions

of these tools used together.  For instance, an integrated environment can eliminate the time and expense of

switching between the editing and processing of a specification.  Instead of saving the specification, loading it into

the specification processor, saving the results of processing, and finally using the editor to manually search for the

resultant errors, the process can be streamlined into a click of the mouse to process the specification and another

click to switch to the editor and jump directly to the error.  This ease of use promotes checking for errors early and

often rather than waiting until the entire specification is written, which is usually more costly and susceptible to

major design flaws.

In addition to reducing errors and facilitating the use of specification languages, integrated environments provide an

opportunity for language designers to incorporate additions and updates to the language that may not yet have been

published, and they provide a standard for all previous work.  This might include incorporating subtleties of the

language or proofs that may have been discovered only after extensive use and experience with the language.  If the
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designers can enforce these items in the environment, they free the users from having to discover the subtleties for

themselves.

The formal software development environment presented in this paper is based on ASTRAL, which is a formal

specification language for real-time systems.  ASTRAL is intended to support formal software development and,

therefore, has been formally defined.  The structuring mechanisms in ASTRAL allow one to build modularized

specifications of complex systems with layering.  A real-time system is modeled by a collection of state machine

specifications and a single global specification.  The ASTRAL Software Development Environment (SDE) is a tool

for the ASTRAL language, which assists in the design, analysis, and reuse of ASTRAL specifications.

The main intent of this paper is to give the reader an overview of the ASTRAL SDE and a status report on its

development.  In addition, some updates to the ASTRAL language that have not appeared in previously published

work, but that have been incorporated into the ASTRAL SDE, are discussed.  In section 2, a brief overview of the

ASTRAL specification language is presented.  In section 3, the ASTRAL SDE is presented.  In section 4, related

systems are discussed.  Finally, in section 5, conclusions drawn from this work and further areas of research are

presented.

2.  ASTRAL Overview

A railroad crossing is used as a pedagogical example throughout the remainder of this paper to illustrate various

features of ASTRAL and of the ASTRAL SDE.  The system description is taken from [Heitmeyer and Lynch 1994].

The system consists of a set of railroad tracks that intersect a street where cars may cross the tracks.  A gate is

located at the crossing to prevent cars from crossing the tracks when a train is near.  A sensor on each track detects

the arrival of trains on that track.  The entire region between the sensors and the crossing exit is denoted by R and

the crossing itself, which is a subinterval of R, is denoted by I.  Figure 1 illustrates the railroad crossing with two

train tracks.  The critical requirements of the system are that whenever a train is in I, the gate must be down and

when no train has been in R for a reasonable length of time, the gate must be up.  The complete ASTRAL

specification of the railroad system is located in the appendix.

In ASTRAL, a real-time system is described as a collection of state machine specifications, each of them

representing a process type of which there may be multiple statically generated instances.  Each process instance in

the system executes concurrently and asynchronously with all the other process instances.  In the railroad

specification, there are two process types, with one instance of the Gate process type and n instances of the Sensor
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process type, where n is the number of tracks.  There is also a global specification, which contains declarations for

types and constants that are shared among more than one process type, as well as assumptions about the global

environment and critical requirements for the whole system.  Figure 2 presents the syntactic structure for an

ASTRAL specification.

I
R

trains

sensors

Figure 1.  The railroad crossing.

An ASTRAL process specification consists of a sequence of levels.  Each level is an abstract data type view of the

system being specified.  The first (Òtop levelÓ) view is a very abstract model of what constitutes the process (types,

constants, variables), what the process does (state transitions), and the critical requirements the process must meet

(invariants and schedules).  Lower levels are increasingly more detailed with the lowest level corresponding closely

to high level code.

The process being specified is thought of as being in various states, with one state differentiated from another by the

values of the state variables.  In the railroad specification, the Gate and Sensor process types have a single variable

each.  The position variable in the Gate process type is an enumerated variable that specifies the current position of

the gate.  The train_in_R variable in the Sensor process type is a Boolean variable that indicates whether a train has

been detected by the sensor.

State variables of a given process instance can only be changed by state transitions of that process instance.

Transitions are described in terms of entry and exit assertions by using an extension of first-order predicate calculus.

Transition entry assertions describe the constraints that state variables must satisfy in order for the transition to fire,

while exit assertions describe the constraints that are fulfilled by state variables after the transition has fired.  An

explicit non-null duration is associated with each transition.  Each transition is either a local transition or an
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exported transition.  A local transition is enabled when its entry assertion is satisfied.  An exported transition,

however, is only enabled when both its entry assertion is satisfied and when it has been called (i.e. invoked) from

the external environment.  Only one transition may be executing on a given process instance at any time.  A

transition is executed as soon as it is enabled assuming no other transition for that process instance is executing.  If

two or more transitions are enabled simultaneously, a nondeterministic choice will occur and only one of them will

be executed.

Astral Specification

GLOBAL SPECIFICATION PROCESS SPECIFICATION Process_1 PROCESS SPECIFICATION Process_n

LEVEL Top_level LEVEL Lower_level LEVEL Bottom_level

TRANSITION T_1 TRANSITION T_2 TRANSITION T_m

...PARAMETERS ENTRY/EXIT Pair EXCEPT/EXIT Pair_1 EXCEPT/EXIT Pair_k

IMPLEMENTATION

VARIABLE

INITIAL

CONSTRAINT

FURTHER ASSUMPTIONS
TRANSITIONS

TYPE
AXIOM

CONSTANT
DEFINE

INVARIANT

SCHEDULE

PROCESSES
TYPE

AXIOM
CONSTANT

DEFINE
ENVIRONMENT

INVARIANT
SCHEDULE

IMPORT
EXPORT

VARIABLE

IMPORTED VARIABLES
INITIAL

CONSTRAINT

FURTHER ASSUMPTIONS

TYPE
AXIOM

CONSTANT
DEFINE

ENVIRONMENT

INVARIANT

SCHEDULE

TRANSITIONS

Time Entry Condition Exit Condition Except Condition Exit ConditionTime

...

...

...

 Figure 2.  The ASTRAL hierarchy.

Every process can export both state variables and transitions; as a consequence, the state variables are readable by

other processes while the transitions are executable from the external environment.  For example, the Sensor process

type exports the variable train_in_R, which is referenced by the Gate process type, and the transition enter_R, which
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is invoked when a train trips the sensor.  Inter-process communication is accomplished by broadcasting the values of

exported variables and the start and end times of exported transitions.  A special variable called now is used to

denote the current time.  The time domain in ASTRAL is the non-negative real numbers.  The value of now is zero

at system initialization time.  Now progresses independently of the execution of any process instance in the system.

In addition to specifying system state (through process variables and constants) and system evolution (through

transitions), an ASTRAL specification also defines system critical requirements and assumptions about the behavior

of both the other processes in the system and the external environment that interacts with the system.  The behavior

of other processes in the system is expressed by means of imported variable clauses, which describe patterns of

changes to the values of imported variables and timing information about transitions exported from other processes.

For example, the imported variable clause of the Gate process type states that once a sensor reports a train, it will

keep reporting a train at least as long as it takes the fastest train to cross the region.  This assumption is needed to

guarantee the liveness requirement of the system.  The behavior of the environment is expressed by means of

environment clauses, which describe assumptions about the pattern of invocation of external transitions.  Critical

requirements are expressed by means of invariants and schedules.  Invariants represent requirements that must hold

in every state that can be reached from the initial state, no matter what the behavior of the external environment is,

while schedules represent additional properties that must be satisfied provided that other system processes and the

external environment behave as assumed.  For example, the global schedule states the safety and liveness

requirements of the system.  That is, that the gate will be down before the fastest train can reach the crossing and

that the gate will be up within a reasonable amount of time from when the slowest train could have exited the

crossing.

Invariants and Schedules are proved over all possible executions of a system.  A system execution is a set of process

executions that contains one process execution for each process instance in the system.  A process execution for a

given process instance is a history of events on that instance.  There are four types of events in ASTRAL.  A call

event occurs for an exported transition tr1 at a time t1 iff tr1 was called at t1.  A start event occurs for a transition tr1

at a time t1 iff tr1 fires at t1.  Similarly, an end event occurs if tr1 ends at t1.  The last type of event is a change

event.  A change event occurs for a variable v1 at a time t1 iff v1 changes value at t1.  Note that change events can

only occur when an end event occurs for some transition.

An example of a transition is the exit_I transition of the Sensor process type:
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TRANSITION exit_I
ENTRY [TIME: exit_dur ]

train_in_R
& now - Start(enter_R) ³

(dist_R_to_I + dist_I_to_out) / min_speed - exit_dur
EXIT

~train_in_R

Exit_I is enabled when a train is in R and enough time has elapsed since the train first entered R for the slowest

train to get past the crossing ((dist_R_to_I + dist_I_to_out) / min_speed Ð exit_dur).  In ASTRAL, Call(T)

indicates when an exported transition T is invoked and Start(T) indicates when it actually fires.  Note that the call

time of enter_R is actually when the train entered R, but under the assumptions of the Sensor environment, enough

time elapses between successive calls of enter_R to guarantee that the start time is equivalent to the call time in this

case.  Start was used in place of call so that the local invariant, which must hold regardless of the behavior of the

external environment, could be proved.  The duration of exit_I is exit_dur and is indicated in the ÒTIMEÓ

expression of the transition.  When exactly exit_dur time has elapsed since a start of exit_I, the train_in_R variable

is reset to false.

An ASTRAL process specification consists of a sequence of levels where the behavior of each level is implemented

by the next lower level in the sequence.  Given two ASTRAL process level specifications PU and PL, where PL is a

refinement of PU, the implementation statement IMPL defines a mapping from all the types, constants, variables, and

transitions of PU into their corresponding terms in PL.  A type, constant, variable, or transition of PL representing

the implementation of a corresponding term in PU is referred to as a mapped type, constant, variable, or transition.

PL can also introduce types, constants and/or variables that are not mapped.  These are referred to as the new types,

constants, or variables of PL.  Note that PL cannot introduce any new transitions (i.e. each transition of PL must be a

mapped transition).  A transition of PU can be mapped into a sequence of transitions, a selection of transitions, or

any combinations thereof.

A selection mapping is of the form TU == A1 & TL.1 | A2 & TL.2 | ... | An & TL.n.  This is defined such that when

the upper level transition TU fires, one and only one lower level transition T L.j fires.  In addition, T L.j can only fire

when both its entry assertion and its associated Òguard,Ó Aj, are true.

A sequence mapping is of the form TU == WHEN EntryL DO TL.1 BEFORE TL.2 BEFORE ... BEFORE TL.n OD.

This defines a mapping such that the sequence of transitions TL.1; ...; TL.n is enabled (i.e. can start) whenever EntryL

evaluates to true.  Once the sequence has started, it cannot be interrupted until all of its transitions have been
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executed in order.  The starting time of the upper level transition TU corresponds to the starting time of the sequence

(which is not necessarily equal to the starting time of TL.1 because of a possible delay between the time when the

sequence starts and the time when TL.1 becomes enabled), while the ending time of TU corresponds to the ending

time of the last transition in the sequence, TL.n.  Note that the only transition that can modify the value of a mapped

variable is the last transition in the sequence.  This further constraint is a consequence of the ASTRAL

communication model.  That is, in the upper level, the new values of the variables affected by TU are broadcast when

TU terminates.  Thus, to preserve this property, mapped variables of PL can be modified only when the sequence

implementing TU ends.  The proof obligations for transition mappings are discussed in a later section.  The details

of transition mappings and process refinement are presented in [Coen-Porisini et al. 1995].

To facilitate reuse and to simplify the construction of large and complex real-time systems, ASTRAL provides the

developer with a composition capability.  The ASTRAL compose clause contains the necessary information to

combine two or more ASTRAL system specifications (i.e. a global specification and its associated collection of

process specifications) into a single specification of the combined system.  If S1 and S2 denote two ASTRAL top

level specifications, then the interaction between the processes of S1 and S2 is described by specifying which

exported transitions of the processes of S1 and S2 are no longer exported to the external environment.  That is, the

stimuli needed to fire these transitions in S1 are produced by processes of the sibling system S2 and vice-versa,

rather than by the external environment.

Figure 3a shows two systems, S1 and S2.  S1 exports transitions T1 and T2 and state variables x1, x2 and x3,

while S2 exports transition T3 and state variables y1 and y2.  When S1 and S2 are composed, some transitions of

S1 will not require an external call, since S2 is now providing part of the environment in which S1 works.  This

works similarly for some transitions of S2.  For instance, in figure 3b, transitions T1 and T3 are no longer

exported, since the events that trigger them are now represented by particular values of y2 and x1, x3, respectively.

Thus, the composed system, C, will export only transition T2.  That is, the external environment of C can call

only transition T2 (see figure 3c).

The most important part of the compose section is the call generation clause, which describes how exported

transitions of S1 processes are triggered by events occurring in S2 processes and vice-versa.  These events are

described by formulas of the following form:
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FORALL t: Time,É (P(S1) « Call(T, t)),

where P(S1) is an ASTRAL well-formed formula describing the occurrence of the events in S1 that are equivalent to

calling the exported transition T of S2.  An example call generation clause is presented in a later section.  The

details of the composition clause and the process of automatically composing ASTRAL specifications are presented

in [Coen-Porisini and Kemmerer 1993].

S1
x1
x2
x3

S2
y1
y2

Cal l(T1)

Cal l(T3)

Cal l (T 2)

   

x1
x2
x3

y1
y2

T1

T3

C

Ca l l (T2)
S1

S2

   

x1
x2
x3
y1
y2

CCall(T2)

a) b) c)

Figure 3.  The composition of S1 and S2 into C.

An introduction and complete overview of the ASTRAL language can be found in [Coen-Porisini et al. 1997].

3.  SDE Overview

Figure 4 shows the user interface to the ASTRAL Software Development Environment.  The hub of the SDE is the

navigation window located in the upper left portion.  The navigation window displays the current specification and

allows the user to hierarchically traverse it.  By double clicking on a line of the displayed specification, a user can

move ÒupÓ or ÒdownÓ in the specification hierarchy of figure 2.  For instance, figure 4 shows the top level of the

Gate process in the railroad crossing specification, which was displayed by double clicking on the Òtop levelÓ line at

the process level.  The same effect can be achieved by highlighting a line of the specification and using the up and

down arrows.  By moving up and down in the navigation window, the corresponding portion of the ASTRAL

hierarchy for the current specification is displayed and various functions, such as edit, insert, and remove, can be

invoked on the highlighted line of the navigation window.  For example, if the ÒEditÓ button was pressed in figure

4, the editor window would pop up with the schedule text loaded.  Most of the operations of the SDE are linked in

some fashion to the navigation window, either as a form of input or as a form of output.
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The top row of buttons in the middle of the SDE are for the most commonly invoked operations.  Clicking on

ÒComposeÓ allows the user to work with multiple specifications and composition specific clauses.  The ÒValidateÓ

button invokes the specification processing component of the SDE, which brings up a window to report the errors

and warnings that result from checking the current specification.  By clicking on a result in the error window, the

user can move the navigation window to the relevant part of the specification.  The ÒModelCheckÓ button brings up

the ASTRAL model checker, which can prove or disprove system requirements over finite time intervals for a given

set of system constants.  The ÒEditÓ button brings up the syntax-directed editor on the section highlighted in the

navigation window.  Finally, the ÒSearchÓ button brings up the search window, which can be used to search and

replace expressions throughout the current specification.  The lower row of buttons is for checking the status of and

invoking a prover on the specification.  The ÒStatusÓ button brings up the proof manager, which keeps track of

changes made to the specification and the current status of proofs.  The ÒProveÓ button generates the PVS

translation of the specification and invokes the PVS theorem prover.

Figure 4.  The ASTRAL SDE.
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The browsers in the right portion of the SDE allow the user to execute a number of predefined queries regarding

processes, transitions, and variables and their relationships to each other in the current specification.  The result of a

query can be clicked on to move the navigation window directly to the appropriate location.  The status lines at the

bottom of the SDE display various items concerning the SDE, such as the specification currently being displayed in

the navigation window, the last event of significance in the SDE, and help lines for different items.

Finally, the menu bar between the rows of buttons contains pull-down menus for various operations, including

loading and saving specifications, generating proof obligations, setting SDE options (e.g., read-only to assure that a

specification doesnÕt get modified), and inserting and removing various objects (e.g. processes, transitions, etc.).

The separate components of the SDE are discussed in more detail in the following subsections.

3.1.  Editor

The SDE editor provides only the most basic functionality of common general purpose editors such as vi or emacs;

however, it is rarely the case that an ASTRAL section is so large as to require the additional functionality provided

by general purpose editors.  More importantly, the syntax checking, automatic formatting, and on-line syntax

documentation of the SDE editor more than compensate for this absence of additional functionality.

3.1.1.  Syntax-directed Editing

All editable items in the SDE are associated with a specific grammar, ranging from the simple alphanumeric

constraint on names to the complex grammars of well-formed formulas.  Through the use of these grammars, the

editor is able to parse its current text and indicate the presence or absence of syntactic errors.  Figure 5 shows the

popup window that appears when the edit function is invoked on the section highlighted in the navigation window

of figure 4.  When editing, if the user is unaware of the exact syntax of a section, the ÒHelpÓ button displays the

corresponding grammar and other pertinent information about the section being edited.  When the text is correct

with respect to its grammar, the ÒOKÓ button is displayed at the bottom of the editor.  However, when a syntax

error is found, the ÒParse ErrorÓ button is displayed instead, which is the case in figure 5.  In addition, the line that

is believed to contain the error is underlined, to allow the user to quickly locate and correct syntactic errors.  Figure

5 shows the editor with a parsing error present in the text.  The error in this case is a parentheses imbalance.  The

last line is underlined since that is where the missing right parenthesis causes a syntax error.
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3.1.2.  Formatting

When first writing specifications, it is more important to concentrate on the content rather than the readability of the

specification.  This doesnÕt mean, however, that readability is unimportant.  In fact, an unreadable specification is

likely to contribute unnecessary confusion, errors, and additional time to development.  Manual formatting is also

likely to impact development time, especially during the initial design stages when changes are more likely to

occur.  In the same way that word wrap (which is also turned on in the editor for this very reason) in word

processors allows writers to concentrate on their words instead of where to place carriage returns, so automatic

formatting in the SDE allows specifiers to focus not on how the specification is entered but on what it says.  When

the OK button is pressed during an edit session, the text in the editor replaces the text the editor was originally

invoked on.  Before the text is replaced, however, the new text is automatically reformatted into a fixed format.

Figure 5.  Editor window for the Gate schedule.

An advantage of automatic formatting, which is not immediately obvious, is that it allows the user to catch

semantic errors that might otherwise go undetected in the specification analyzer.  As an example, consider the

missing parenthesis in the Gate schedule clause that is shown in the editor window of figure 5.  This parenthesis can

be placed in a number of different locations to syntactically fix the problem.  Figure 6a shows the result of formatting

in the edit window of figure 5 (after adding the missing parenthesis to the end).  As can be seen from figure 6a, by

adding a parenthesis to the end of the text the highlighted implication is placed in the wrong scope.  Figure 6b

shows the same formula with the parenthesis correctly placed.
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a) b)

Figure 6.  Formatted forms of Gate schedule with misplaced and correctly placed parenthesis

Mistaken operator precedence is another type of error that is usually not detectable in the specification analyzer.

Therefore, the formatter indicates the precedence of Boolean operators by the distance between the operator and its

adjoining text.  That is, the closer the operator is to the text, the higher its precedence.  In figure 7a, the highlighted

conjunction incorrectly binds more tightly than the two implications surrounding it.  In figure 7b, however,

parentheses have corrected the situation and the conjunction now has a lower precedence than the parenthesized

expressions.  Both types of errors would most likely go undetected with manual formatting because the user would

format the text as s/he assumed it was written, which would be wrong in this case, even though the text was both

type correct and syntactically correct.

  

a) b)

Figure 7.  Formatted forms of Sensor invariant with scoping error and correction.

3.1.3.  Search and Replace

Although the search function is not directly part of the editor, it shares the two features described above.  The search

button in the main window brings up the search and replace window, which allows the user to search for and replace

regular expressions throughout the entire specification or in a specific portion.  While there is nothing revolutionary

in its behavior, what is important is that even this procedure has been designed to reduce the possibility of error.

To assure that the benefits of syntax-directed editing and formatting are not lost, the replace procedure aborts if the
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replacement text would cause a syntax error within the section where the replacement is to occur.  In addition, the

text is reformatted appropriately when any replacements are made.

3.2.  Validation

One of the most valuable tools that the SDE has to offer is the validation mechanism.  When a specification

validates without error, it indicates that the specification is ready for the next stage in its development, namely

formal proofs.  Similarly, when a composition of system specifications validates without error, it is ready for the

construction of the new composite specification.

The bulk of the validation function involves checking that any identifiers used in the specification have been defined

in the correct scope and that all operands to both built-in operators and user-defined transitions, defines, etc. have the

correct types.  Validation also performs other functions such as checking for scope conflicts and warning of missing

parameters, which while still well defined in the case of transitions, may not be what the user desired.  Figure 8

shows a sample validation results window, which demonstrates some of the different types of errors that are reported.

Figure 8.  The validation results window.

In the spirit of Òease of use,Ó entries in the validation window are linked to the navigation window.  That is, any

error appearing in the validation window can be double clicked, which causes the navigation window to display the

corresponding section of the specification and highlight the line at which the error occurred.  This is useful for

rapidly locating and correcting errors.
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3.3.  Composing ASTRAL Specifications

Although ASTRAL allows individual specifications to be composed into a new composite specification, the

extensive amount of work required to build the new specification (as described in [Coen-Porisini and Kemmerer

1993]) may cause users to hesitate before taking advantage of this feature.  Also, when constructing the composite

specification there are numerous opportunities for errors and omissions.  By using the SDE, however, the user is

only required to perform one step in the construction of the new specification.

The ÒComposeÓ button sets the SDE into composition mode and allows the manipulation of multiple system

specifications in the same fashion as individual specifications by adding a new topmost level to the ASTRAL

hierarchy, which contains specifications as its components along with composition specific clauses.  Figure 9 shows

the additional composition hierarchy.  When validating a composition, the validation procedure examines the

declarations in all specifications and warns the user of possible name conflicts.  Those declarations that have the

same name but different meanings between specifications can be changed by the user using the search and replace

feature.  Declarations with the same meaning can be left as is and duplicates will be removed automatically during

the construction of the composite specification.

                           Astral Composition

COMPOSITION CLAUSES           

PROCESS
   TYPE

ASTRAL SPECIFICATION  Spec_1 ASTRAL SPECIFICATION  Spec_n

CALL GENERATION  CG_1                                                                    CALL GENERATION CG_n

      AXIOM
          CONSTANT
              DEFINE

CALL GENERATION CLAUSES

Figure 9.  The composition hierarchy.

When the SDE is in composition mode, the compose button is replaced by a ÒBuildÓ button.  The build procedure

performs a number of transformations to construct the new composite specification.  For example, call statements

involving exported transitions that have been made internal must be replaced by an expression derived from the

corresponding call generation clause describing how the transition is invoked internally.  However, the call
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generation clause cannot simply be used as it is declared because it is written for all calls in the system whereas the

calls being replaced are specific instances with a particular process id, time, and parameters as well as possibly

referencing a number of calls into the past (i.e. using Calln where Calln(T, t) holds if the nth call in the past to

transition T occurred at time t).  The specific changes that must be made to a call generation clause before it can be

used were not elaborated in [Coen-Porisini and Kemmerer 1993].  However, it was necessary to develop algorithms

for making these changes when implementing the build functionality in the SDE.  For example, suppose the

composition section contains the following call generation clause (taken from [Coen-Porisini et al. 1997]):

FORALL t:Time, C:Central_Control_ID, L:Line
( Change(LD_Unit(C).LocStatus(L), t)
& LD_Unit(C).LocStatus(L) = In_Progress
« C.Call(Receive_LD(LD_Unit(C).LocOut(L)),t))

This means that whenever the variable LD_Unit(C).LocStatus(L) changes to In_Progress, an Òinternal callÓ is made

to Receive_LD.  Furthermore, suppose the following formula is in the schedule clause of one of the original

specifications being composed:

pid.Call2(Receive_LD(arg1), time1)

Since Receive_LD is no longer exported in the composite specification, the formula needs to be transformed to an

expression in which the external call is replaced by the combination of values described by the call generation

clause.  An internal call to Receive_LD in process pid with argument arg1 occurs whenever the following formula

(call it cg¢) holds:

EXISTS t:Time, C:Central_Control_ID, L:Line
( C = pid
& LD_Unit(C).LocOut(L) = arg1
& Change(LD_Unit(C).LocStatus(L), t)
& LD_Unit(C).LocStatus(L) = In_Progress)

To complete the transformation, one must check that cg¢ holds at time1 and that time1 was the second time in the

past that cg¢ changed to true.  The following abbreviated formula shows the fully modified form:

IF cg ¢
THEN Change3(cg¢, time1)
ELSE Change4(cg¢, time1)
FI

If cg¢ holds at the current instant, then for pid.Call2(Receive_LD(arg1), time1) to hold, cg¢ must have changed three

times:  once to true at time1, once to false between time1 and the current instant, and finally to true at the current
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instant.  Similarly, cg¢ must have changed four times if cg¢ does not hold at the current instant.  Given the

complexity of this simple example, it can be seen that performing such transformations by hand for complete

specifications would take a significant amount of time and effort, not to mention the almost inevitable possibility for

error.  Even though the exact details of the call generation clause transformations were not discussed in previous

work, the update to the ASTRAL language has been incorporated into the SDE.  This is an example of how

designers using the SDE can have access to the most recent features of the language.

Similar changes need to be made for the environment clauses.  That is, the environment is required to satisfy certain

conditions to guarantee correct behavior of the system, but when an exported transition becomes internal,

assumptions about calls to that transition must now be satisfied by the behavior of other processes in the system

rather than by the external environment.  Thus, those assumptions must be moved from the environment section to

the imported variable clause.  To perform this process, the environment clause is first modified according to the call

generation clauses.  It is then transformed into an equivalent CNF expression and each conjunct is checked for calls

to exported transitions.  If no such calls are found in a conjunct, then the conjunct is conjoined to the imported

variable clause.  If a call is found, then the conjunct remains in the environment clause.

Besides replacing calls with equivalent call generation expressions and moving environmental assumptions to the

imported variable clause, the build procedure also performs other transformations.  These include removing the no

longer exported transitions from the export clause, importing any variables, types, etc. used in the modified clauses,

and updating transition entry/exit assertions.  In fact, the build procedure performs all of the transformations

discussed in [Coen-Porisini and Kemmerer 1993].  Thus, the user is completely relieved of the burden of producing

the composite specification by the build function of the SDE.

3.4.  Proof Obligations

In order to assure that an ASTRAL specification satisfies its requirements, it is necessary to generate and prove the

appropriate proof obligations.  ASTRAL proofs are divided into three categories: intra-level proofs, inter-level

proofs, and composition proofs.  The intra-level proof obligations deal with proving that the specification of level i

is consistent and satisfies the stated critical requirements for each of the processes, as well as for the global system.

The inter-level proof obligations deal with proving for each process type that the specification of level i+1 is

consistent with the specification of level i.  The composition proof obligations deal with proving that the

assumptions of each of the components of the composite system are satisfied by the other components in the system
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that replace what was previously the external environment.  Details of the three types of proof obligations can be

found in [Coen-Porisini et al. 1994], [Coen-Porisini et al. 1995], and [Coen-Porisini and Kemmerer 1993],

respectively.

The proof obligations for ASTRAL are relatively straightforward, but in many cases are rather lengthy, which means

they are prone to error.  By generating the appropriate proof obligations automatically, not only is the user relieved

of the time involved, but the proof obligations are guaranteed to be accurate.  The SDE generates all three types of

ASTRAL proof obligations.  The intra-level proof obligations have also been encoded in the theorem prover.  The

inter-level and composition proof obligations, however, have not yet been defined in the theorem prover portion of

the SDE, which is discussed later.  Thus, until the theorem prover includes these definitions, the user can still

obtain the necessary proof obligations by using the verification condition generator (VCG).

The inter-level proofs consist of showing that the mapping for each upper level transition is correctly implemented

by the corresponding sequence, selection, or combination thereof in the next lower level.  For selections, it must be

shown that whenever the upper level transition TU fires, one of the lower level transitions TL.j fires, that the duration

of each T L.j is equal to the duration of TU, and that the effect of each T L.j is equivalent to the effect of TU.  For

sequences, it must be shown that the sequence is enabled if and only if TU is enabled, that the duration of the

sequence (including any initial delay after EntryL is true) is equal to the duration of TU, and that the effect of the

sequence is equivalent to the effect of TU.  The exact proof obligations for simple sequences and selections are given

in [Coen-Porisini et al. 1995], but the proof obligations that must be generated for an arbitrary combination of

sequences and selections are not discussed.  While implementing the VCG component of the SDE, these proof

obligations were developed.  For example, consider the mapping:

TU == WHEN EntryL DO ( A0 & ( A1 & TL.1

| A2 & (TL.2 BEFORE TL.3))
| A4 & TL.4) BEFORE TL.5 OD.

This mapping consists of nested sequences and selections.  For arbitrary combinations of sequences and selections,

the proof obligations are generated by constructing a set of simple sequences, such that all possible sequences that

can occur in the arbitrary mapping are represented.  This is done by ÒdistributingÓ the selection portions of the

mapping until a selection of simple sequences is obtained.  Since all the mappings in the set are sequences, the

existing sequence proof obligations can then be generated and proven to show that the behavior of the arbitrary

mapping is equivalent to that of the upper level transition.  For the above mapping, the set of sequences is:
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WHEN EntryL DO TL.1¢ BEFORE TL.5 OD
WHEN EntryL DO TL.2¢ BEFORE TL.3 BEFORE TL.5 OD
WHEN EntryL DO TL.4¢ BEFORE TL.5 OD

where entry(TL.1¢) º A0 & A1 & entry(TL.1), entry(TL.2¢) º A0 & A2 & entry(TL.2), entry(TL.4¢) º A4 & entry(TL.4),

and exit(TL.j¢) º exit(TL.j).  This is another example where even though the exact details of these proof obligations

were not discussed in previous work, the updated definition of the ASTRAL language has been incorporated into the

proof obligation generator of the SDE.

Note that this technique can produce an exponential number of sequences with respect to the number of transitions

referenced in the original mapping.  This complexity is unavoidable, however, because the user must prove every

possible combination of sequences to guarantee the correctness of the mapping.  If any combination was not proved,

there would be the potential for that combination to violate the critical requirements of the upper level.  In order for

such complexity to occur, however, a transition mapping must contain a large number of nested selections.  In

general, the number of nested selections will be small because transitions will rarely need to be implemented by a

large number of choices.  In the end, the user has the ability to control the number of sequences to be proved by

choosing the complexity of the mappings.

3.5.  Browsers

The process, transition, and variable browsers in the right portion of figure 4 enable the user to view various

relationships between the three types of items.  The complete impact that the browsers will have on the specification

writing process has not yet been realized.  It is clear, however, that there will certainly be times when a user that is

modifying a system may wish to know which processes import a particular variable, which transitions set the same

variables that are set by a selected transition, or any other number of relationships that may be helpful at a particular

moment.  Uncovering such relationships manually, however, can be a time consuming task.  The browsers make

use of symbol tables maintained during editing to easily ascertain and display the appropriate information.  To

illustrate the types of queries available, figure 10 shows the transition browser queries.

A query is executed by selecting an item (i.e. variable, transition, or process) in one of the browsers and then

choosing one of the queries in the ÒInspect Selected..Ó menu beneath that browser.  Thus, the result of one query

becomes the input of the next.  Any of the items that appear within the browser windows as the result of the query

can be double clicked on to move the navigation window to the itemÕs declaration within the specification.
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The browsers in figure 4 demonstrate the results of a sample browser session.  First, all processes declared in the

current specification were listed with the special ÒAll Processes DefinedÓ process browser query, which does not

require any browser item to be highlighted.  Then, the ÒVariables declared in or imported by Selected ProcessÓ

query was performed on the Gate process.  Finally, the ÒTransitions using Selected Variable in an entry clauseÓ

query was performed on the train_in_R variable.  The end result is a listing in the transition browser window of

transitions in which train_in_R appears in an entry clause.  In a pedagogical specification such as the railroad

crossing, the information obtained by the browsers could most likely be obtained manually in a similar amount of

time.  In larger specifications, however, the difference in speed and accuracy between obtaining the information

manually and obtaining it using the browsers will be much more significant.

Figure 10.  Transition browser queries.

The browsers are especially useful during the maintenance phase, since in many cases it is someone other than the

original developer who is responsible for maintaining the specification.  In addition, even the original specifier may

be unclear on some of the details due to the elapsed time between updates.  In either case, the browsers can be used

to quickly determine the portions of the specification that may be affected by any proposed changes.  For example,

suppose that during maintenance the effect that a transition has on some variable needs to be changed.  In this case,

it is desirable to determine those transitions that may be affected by the change, namely those that use the variable in

an entry assertion.  Once the transitions are listed with the appropriate browser queries, they can be quickly scanned

to determine which ones will be affected by the update.

The browsers can also assist in the proof process.  For example, consider an invariant with a property of the form P

® var = val, for some ASTRAL predicate P, variable var, and value val.  The prover can select var in the variable
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browser and query the transitions that use var in an exit assertion.  Each transition that is displayed in the transition

browser can then be double clicked on and its specification will be shown in the navigation window.  This allows

the exit assertion to be examined to determine which transitions change var to a value other than val.  The prover

can then check whether P implies the entry assertion of any of those transitions and if such a transition is found, then

the invariant can be violated if P still holds at the end of that transition.

3.6.  Theorem Prover

Interactive theorem provers provide mechanical support for deductive reasoning.  To prove the properties of a system

with a particular theorem prover, the system and its proof obligations are first expressed in the specification language

associated with the prover.  The obligations are then discharged by reducing the high-level proofs of the obligations

into simpler subproofs using the axioms and inference rules of the proverÕs specification language.  The goal of this

reduction is to simplify the proofs enough so that each subproof can be automatically discharged by the proverÕs

basic built-in decision procedures that support arithmetic and Boolean reasoning.  Theorem provers provide a

number of forms of assistance, which include preserving the soundness of proofs, finishing off proof details

automatically, keeping track of proof status, and recording proofs for reuse.  Rather than implementing a theorem

prover for ASTRAL from scratch, it was decided to take advantage of an existing general purpose theorem prover

modified for use with ASTRAL.  After investigating a number of theorem provers, the Prototype Verification

System (PVS) [Crow et al. 1995] was considered to be ideal for ASTRAL because of its powerful typing system,

higher-order facilities, heavily automated decision procedures, and intuitive reasoning style.

A PVS specification consists of a modular collection of theories, where a theory is defined by a set of type, constant,

axiom, and theorem declarations.  PVS has a very expressive typing language, which includes functions, arrays,

sets, tuples, enumerated types, and predicate subtypes.  When the PVS prover is invoked on a theorem, the theorem

is displayed in the form of a sequent.  A sequent consists of a set of antecedents and a set of consequents, where if

A1, ..., An are antecedents and C1, ..., Cn are consequents in the current sequent, then the current goal is (A1 & ... &

An) ® (C1 | ... | Cn).  It is the userÕs job to direct PVS with prover commands such as instantiating quantifiers and

introducing lemmas to show that either (1) there exists an i such that Ai is false, (2) there exists an i such that C i is

true, or (3) there exists a pair (i, j) such that Ai = C j.  PVS also allows the user to define strategies, which are

collections of prover commands that can be developed to automate frequently occurring proof patterns.
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To use PVS to prove properties of ASTRAL systems, the semantics of ASTRAL needed to be encoded in the PVS

logic.  These semantics include both the axiomatization of the ASTRAL abstract machine as well as the precise

definition of each ASTRAL operator.  The abstract machine describes admissible system executions, where a system

execution consists of the call, start, and end times of each transition.  For example, one axiom of the abstract

machine states that if no transition has ended within a given interval on a particular process, then each variable of

that process keeps the same value throughout the interval.  This axiom is called the vars_no_change axiom and

defines the ASTRAL property that variables can only change values when transitions end.  

vars_no_change: AXIOM
(FORALL (t1, t3):

t1 £ t3 AND
(FORALL (tr2, t2):

t1 < t2 + Duration(tr2) AND
t2 + Duration(tr2) £ t3 IMPLIES

NOT Fired(tr2, t2)) IMPLIES
(FORALL (t2):

t1 £ t2 AND t2 £ t3 IMPLIES
Vars_No_Change(t1, t2)))

Note that the function Vars_No_Change(t1, t2) in the vars_no_change definition is a specification-dependent function

constructed by the translator stating that the value of each variable of the process is the same at t1 and t2.  The

vars_no_change axiom is one of ten axioms in the axiomatization of the ASTRAL abstract machine.

In addition to the abstract machine axioms, the ASTRAL semantics also include the definitions of each ASTRAL

operator.  Since ASTRAL expressions can have different values depending on the current time in the system (i.e.

now), each ASTRAL operator has been defined such that the evaluation of its operands are delayed until a temporal

context (i.e. a value of now) is given.  For example, the past operator, which normally takes an ASTRAL formula of

type T and a time is defined as:

Past(v1: [time ® T], at1: [time ® time])
(t1: {t1: time | at1(t1) £ t1}): T = v1(at1(t1))

When a time is applied to a past expression, the time operand, which can be an arbitrary formula, is evaluated to a

specific time and then the value of the formula operand is evaluated at the resulting time.  Note that the type of t1

has been limited such that at1(t1) £ t1 to enforce the semantics of the past operator, which says that past cannot be

applied at times beyond now (e.g., past(v, now+1) is not allowed).  The standard Boolean and arithmetic
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connectives have been defined similarly to the ASTRAL operators in that their normal operands of type T become

functions of type [time ® T].  For example, conjunction is defined as:

AND(b1: [time ® bool], b2: [time ® bool])(t1: time): bool = b1(t1) AND b2(t1)

With these definitions, expressions in the encoding can be constructed exactly as they are in ASTRAL.  When an

evaluation time is applied to an expression, the time is propagated to each individual operator and operand in the

expression.  For example, (A AND B)(t) becomes A(t) AND B(t).  The translator component of the SDE can

translate any ASTRAL specification into its PVS representation.  To translate an ASTRAL expression, its parse

tree is traversed and the appropriate PVS definition is substituted for each operator.  The two formulas below show

the environment clause of the Sensor process in ASTRAL and PVS forms.  The left formula is in ASTRAL

notation and the right formula is the PVS translation that was automatically generated from the ASTRAL form.

Environment
Call(enter_R, now) &
EXISTS t: time (

t ³ 0 &
t £ now &
Call2(enter_R, t)) ®

Call(enter_R) - Call2(enter_R) >
(dist_R_to_I + dist_I_to_out) /

min_speed

Environment: [time ® bool] =
Call1(enter_r, now) AND
(EX! (t: [time ® time]):

t ³ const(0) AND
t £ now AND
Calln(const(2), enter_r, t)) IMPLIES

Call1(enter_r) - Calln(const(2), enter_r) >
(const(dist_r_to_i) + const(dist_i_to_out)) /

const(min_speed)

Note that the function ÒconstÓ is used to denote numeric and symbolic values that are constant over time.  When

the above expression is evaluated at a specific time, the const Òdrops outÓ.  Also note that user-defined identifiers

such as Òenter_RÓ have been changed to a lower case form in the translation.  This is because PVS is case-sensitive

while ASTRAL is case-insensitive, thus the choice was made to always translate user-defined identifiers into a lower

case form.  The axiomatization and the operator definitions have been incorporated into an ASTRAL-PVS library,

included as part of the SDE.  For a complete description of the axiomatization and the PVS encoding, see [Kolano

1998].

A prototype proof manager has been implemented that tracks changes to ASTRAL specifications and automatically

generates PVS translations when appropriate.  The ÒProveÓ button of the SDE generates the translations for those

sections of the specification that have changed more recently than they have been translated.  The ÒProveÓ button

then invokes PVS on the appropriate context directory and retrieves the PVS proof status.  In the future, the proof

manager will perform other tasks such as guiding the user as to the design or analysis step to perform next.  The
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ÒStatusÓ button brings up the proof manager window, which is shown in figure 11 for the railroad crossing

specification.

PVS was used to prove a portion of the requirements of the railroad crossing specification.  These proofs were the

first extensive test of the ASTRAL-PVS encoding on real-time properties spanning a fairly large time interval (i.e.

the time between an event and its required response).  The proof of the gate safety property was proven for one of the

two worst case scenarios.  Essentially, to prove that the gate is lowered in time, the proof can be split into cases

such that when a train arrives, the gate can be either idle with position being in one of four states, or the gate can be

executing a transition.  The longest time for the gate to be lowered occurs when either the up or raise transition is

firing (depending on the values of up_dur, raise_dur, and t_lower).  The raise case was proved using 258 prover

commands and required 25 lemmas to be provided to the prover during the course of the proof.  The invariant of the

sensor process, which is used to guarantee that the sensors act as assumed in the gateÕs imported variable clause,

was completely proved using 490 prover commands and providing 38 lemmas.

Figure 11.  The proof manager window.

Although nothing was found that could not be derived using only the abstract machine axioms, the proofs were

sometimes overly complicated by the lack of supporting lemmas.  Perhaps the most pervasive example of this was

in applying the vars_no_change axiom.  To show that no variables change between two times, it must be shown

that no transition ends between those two times.  To show that a transition does not end, its entry assertion is

usually compared to the known state in the system to achieve a contradiction.  To determine the state of the system

at a given time, however, it is almost always necessary to apply the vars_no_change axiom again.  This creates a
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circular scenario, which, although resolvable with complex case analysis on the firing times and durations of

transitions, makes the proofs long and complex and causes much repetition and waste of time.  The discovery of this

problem during the railroad proofs led to the definition of the no_trans_fire lemma shown below:

no_trans_fire: LEMMA
(FORALL (t0, t3):

t0 £ t3 AND
(EXISTS (tr1):

t0 ³ Duration(tr1) AND
Fired(tr1, t0 - Duration(tr1))) AND

(FORALL (tr1, t1):
t0 £ t1 AND t1 £ t3 AND
(FORALL (t2):

t0 £ t2 AND t2 £ t1 IMPLIES
Vars_No_Change(t0, t2)) AND

(FORALL (tr2, t2):
t0 £ t2 AND t2 < t1 IMPLIES

NOT Fired(tr2, t2)) IMPLIES
NOT Fired(tr1, t1)) IMPLIES

(FORALL (tr1, t1):
t0 £ t1 AND t1 £ t3 IMPLIES

NOT Fired(tr1, t1)))

This lemma can be used to prove the subgoal of the vars_no_change axiom requiring that no transition ends in the

given interval.  This lemma takes advantage of several facts about ASTRAL proofs.  First, in order to show that no

transition fires in an interval, it is sufficient to show that no transition is the first to fire in that interval.  When

showing that no transition is the first to fire at a time t in the given interval, it can be assumed that no transition

fires between the beginning of the interval up until t.  Another observation is that the vars_no_change axiom is

almost always applied on an interval beginning with the end of some transition.  Since it is assumed that no

transition fires up until t and a transition just ended to start the interval, it can also be assumed that no variable

changes from the beginning of the interval up until and including t.  With this assumption, the circular application

of axioms is eliminated when using the vars_no_change axiom, and the proofs are significantly simplified.  In

addition to the no_trans_fire lemma, 9 other lemmas were developed during the proofs of the railroad crossing.

3.7. Model Checker

Since performing proofs with a theorem prover can be a long and arduous task and finding an error within a

specification during the theorem proving process can negate days or even weeks worth of work, it is to the userÕs

advantage to be as confident as possible that the requirements of a specification hold before invoking the theorem

prover.  One way to gain this confidence is through the use of a model checker.  The model checker can check the
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requirements of a specification over a finite time interval and for a given set of system constants.  Figure 12 shows

the model checker window that is brought up by clicking the ÒModelCheckÓ button in the SDE as shown in figure

4.

The current ASTRAL model checker is an updated version of the prototype reported in [Dang and Kemmerer 1997].

In the prototype, the model checking process was realized by simulating the ASTRAL abstract machine and

enumerating all possible execution branches (up to a time bound) in order to check the critical requirements of a

specification.  The new model checker, in contrast, generates customized C++ code for each specification.  This code

is actually a prototype implementation of the specified system and a control module to enumerate all the branches of

execution of this implementation up to a system time bound set by the user.  This code generator approach takes

advantage of the fact that ASTRAL is a modularized specification language and that the mapping from an ASTRAL

specification to C++ classes is quite natural.  For example, an ASTRAL process instance can be translated into a

C++ class instance, and ASTRAL data types, like LIST and SET, can be implemented efficiently in C++.  Using

the code generator makes it possible to check large specifications within a reasonable amount of time.

Figure 12.  The model checker window.
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The model checking procedure in the SDE is as follows.  The user first needs to set up a finite time bound and

values for all system or process level constants in the specification by clicking the ÒConst SetupÓ button.  The time

bound indicates the maximal depth that the model checker will search for the current specification.  The reason for

assigning concrete values to these constants is that currently the model checker can only check a specific instance of

the specification.  After doing this, the user has two choices for invoking the model checker: ÒStart(all states)Ó or

ÒStart(obey Env)Ó.  The ÒStart(all states)Ó button causes the model checker to enumerate all the possible states

within the time bound and to check that the critical requirements of the specification hold in each state.  The

ÒStart(obey Env)Ó button, in contrast, will check only those states that satisfy the environment clauses.  If a failure

is detected by the model checker, the transcript window will indicate the actual detailed trace of the states that

violated the requirements of the specification.  Each state in the trace contains, among others, the truth values of all

the critical requirements, and the values of all local variables and the status information of all transition instances for

every process instance.  The user can easily follow the trace to figure out where the specification goes wrong, since

each trace is for a single execution branch of the specification and is presented at the specification level.  Figure 13

shows the transcript of a violating trace of states from an earlier version of the railroad specification.  Besides

performing system level model checking as described above, the model checker can also perform process level model

checking by enumerating all reachable states of a process instance.  In this case, the states explored are restricted by

the imported variable clause of the process.

When using the ASTRAL model checker to analyze the railroad system, it was necessary to change the duration

constants in the railroad specification from real to integer, because the model checker only deals with discrete time.

The model checking results from the railroad specification demonstrated that the model checker is a useful tool for

finding errors in a specification.  It was able to successfully uncover a number of errors in earlier versions of the

railroad specification, and when it was eventually run on the specification presented in this paper, which is the

seventh version, no errors were found after searching 8,932,382 states in 200.7 seconds.  The time bound used was

25, and the constants were set as follows:

dist_R_to_I = dist_I_to_out = 100
min_speed = 15
max_speed = 20
wait_time = 3.

All other constants were set to the value 1.  Note that the constants need to be chosen carefully to assure meaningful

results.  In general, this means that the choice of constants must be sufficient to assure that something ÒinterestingÓ
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occurs within the chosen time interval.  For instance, for the railroad system, the interesting events are trains

entering and exiting the crossing.  If (dist_R_to_I + dist_I_to_out) / max_speed were chosen larger than the time

bound, the requirements would hold, but essentially nothing would have been tested because no train could reach

the crossing within the time interval.

Figure 13.  Transcript of a violating trace of states.

Once a suitable degree of assurance was obtained by running the model checker on the railroad specification with the

constant values and time interval, as indicated above, the theorem proving component of the SDE was used to prove

that selected portions of the requirements held for all constant values and for all times.

4.  Related Work

A number of other development environments are available for other specification languages.  MT [Clements et al.

1993] is an integrated development environment for the Modechart language, which incorporates components similar

to those of the SDE.  It includes the ability to hierarchically traverse specifications and invoke the editor on the

displayed portion.  MTÕs Consistency and Completeness Checker is similar in function to the SDEÕs validation

procedure, performing a variety of static checks on the current specification.  MT also provides a simulator which
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allows users to set up various conditions and display the results of a single execution path.  Finally, MT has a

verifier component to verify certain types of properties such as starvation and reachability.

STATEMATE [Harel et al. 1990] is another graphical environment for specifying reactive systems based on

statecharts.  It includes a number of different editors supporting statecharts, activity-charts, and module-charts which,

like the SDE editor, check for syntactic errors immediately upon input.  STATEMATE can also perform various

consistency, completeness, and static logic tests at any time during a session.  A simulator component can be run

either interactively or according to a program specified in a simulation control language.  Simulator overhead can be

avoided by automatically generating a rapid prototype of the specified system in C or Ada code.

The Graphical Interval Logic Toolset [Kutty et al. 1993] provides support for editing and verifying formulas written

in Graphical Interval Logic.  Like the SDE, the editor in the toolset is syntax-directed to prevent syntactic errors.

Formulas can be easily composed to create more complex formulas.  Given a set of predicates from the user that

supposedly implies a formula, the toolset uses a theorem prover to search for and display an appropriate

counterexample, if one exists.

StateTime [Ostroff 1997] is a toolset supporting the design and analysis of specifications written in the Timed

Transition Model/Real-Time Temporal Logic (TTM/RTTL) framework.  StateTime consists of a graphical front-

end to construct TTM specifications.  Like the SDE, StateTime has both model checking and theorem proving

capabilities.  Additionally, a translator component can translate TTM/RTTL specifications to the language of the

STeP prover [Bjorner et al. 1997].

5.  Conclusions and Future Work

The SDE offers features that reduce errors and facilitate use throughout all stages of the specification development

process.  In the initial specification phase, the editor prevents syntax errors and the formatter enhances readability.

In the middle phase, the validation function reports type errors, scoping errors, missing parameters, etc., and the

VCG component generates the proof obligations needed to prove the specification correct with respect to its critical

requirements.  In the analysis phase, the model checker and theorem prover components allow these requirements to

be proven.  Finally, the browsers and compose/build features provide for easy maintenance and reuse of

specifications.
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ASTRAL has been used by both its developers and others to specify a number of interesting real-time concurrent

systems.  In [Coen-Porisini et al. 1994] the results of using it to formally specify a Consultative Committee on

International Telephony and Telegraphy (CCITT) system that consists of a packet assembler process and several

input processes is reported.  In [Coen-Porisini et al. 1997] a phone system is composed with a switch to generate a

wide-area phone system.  The use of ASTRAL as a hardware description language was demonstrated in [Buonanno

et al. 1992], where it was used to formally specify a checksum generator and a universal asynchronous receiver

transmitter (UART) between a modem and a microprocessor.  At Delft University of Technology (The Netherlands)

ASTRAL was used to specify a robot control system [Brink et al. 1995].  The ASTRAL model checker has also

been used to demonstrate flaws in several encryption protocols [Dang and Kemmerer 1997].  These case studies

demonstrate the expressiveness and the power of the language.  They also show ASTRALÕs usefulness for

specifying varying types of real-time systems from basic hardware to complete communication systems.  The packet

assembler, the wide-area phone system, the railroad crossing, an elevator controller, a production cell, an Olympic

boxing scoring system, and a number of encryption protocols have all been specified and validated using the SDE.

This paper has shown how the ASTRAL SDE eliminates a large portion of the burden placed on the ASTRAL

developer.  It allows formal specifications to be written more quickly and with less errors and it provides the user

with tools for analyzing the specifications.  It has also shown two of the updates to the ASTRAL language that have

been incorporated into the SDE, which makes these features readily available to the system designers using the

environment.  The model checker allows the user to quickly check for design errors in a specific time interval and

the theorem prover provides assistance for discharging the general proof obligations.

The current version of the ASTRAL SDE is available for public use.  The system can be obtained by anonymous

ftp at ftp.cs.ucsb.edu in the directory /pub/rsg-distrib.  The file name to download is in the form Òastral-

mmmyy.tar.gz,Ó where mmm is the first three letters of the month and yy is the last two digits of the year of the

most recent version of the system.

The model checking technique used by the model checker in this paper is explicit state exploration.  It handles only

a subset of ASTRAL, for the richness of complete ASTRAL makes validity checking of a general ASTRAL formula

undecidable.  Strictly speaking, the model checker is only a testing tool when the specification considered has

infinite states, as was discussed in [Dang and Kemmerer 1997].  A symbolic model checker that could handle a
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larger subset of ASTRAL is highly desirable.  This is one of the ongoing efforts in the Reliable Software Group at

UCSB.

One tool to be added to the ASTRAL SDE is a symbolic executor.  This would allow the specifier to build a rapid

prototype and observe the behavior of the system under explicit scenarios without the cost of building the actual

system first.  Another SDE component, which has been partially implemented, is a specification management tool.

This tool keeps track of tasks that still need to be performed on each specification before it can be considered

complete.  The proof manager discussed in section 3.6 is one portion of this tool.  In the future, more functionality

will be added, such as providing direction to the user as to which actions should be performed next and with which

tools.

A number of issues still need to be addressed in the ASTRAL-PVS translator and encoding.  To strengthen the

semantic foundation of the ASTRAL axioms, the proofs of soundness and completeness should be performed.  In

order to use the theorem prover for inter-level proofs, the implementation clause of ASTRAL, which is used to map

relationships between upper and lower level specifications, needs to be incorporated into the translator, as well as the

inter-level proof obligations necessary to show that an implementation is consistent with the level above.

Currently, the refinement mechanism described in [Coen-Porisini et al. 1995] is in a transitional phase, thus its

translation was postponed until the new refinement mechanism is in place.

In general, more proofs need to be performed for different ASTRAL systems using their PVS translations.  In

studying the proofs performed for many systems, it can be determined if recurring patterns exist in the proofs.  These

patterns can then be incorporated into suitable PVS strategies.  The patterns discovered may also lead to the

definition of useful lemmas that can be proven in advance and added to the ASTRAL-PVS library for future use.

Work is also in progress to investigate whether the structure of an ASTRAL specification affects which lemmas and

strategies are most useful during the proofs for that specification.
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Appendix

SPECIFICATION Railroad_Crossing
GLOBAL SPECIFICATION Railroad_Crossing

PROCESSES
the_gate: Gate,
the_sensors: array [1..n_tracks] of Sensor

TYPE
pos_integer: TYPEDEF i: integer (i > 0),
pos_real: TYPEDEF i: real (i > 0),
gate_position: (raised, raising, lowered, lowering),
sensor_id: TYPEDEF i: id (IDTYPE(i) = Sensor)

CONSTANT
n_tracks: pos_integer,
min_speed, max_speed: pos_real,
dist_R_to_I, dist_I_to_out: pos_real,
response_time, wait_time: pos_real

AXIOM
max_speed ³ min_speed

& response_time < dist_R_to_I / max_speed
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SCHEDULE
/* gate will be down before fastest train reaches crossing */

( EXISTS s: sensor_id
( s.train_in_R
& now - s.Call(enter_R) ³ dist_R_to_I / max_speed)

® the_gate.position = lowered)
/* gate will be up after slowest train exits crossing and a reasonable wait time has elapsed */
& ( FORALL s: sensor_id

( ~s.train_in_R
& ( EXISTS t: time

(s.Call(enter_R, t))
® now - s.Call(enter_R) ³ (dist_R_to_I + dist_I_to_out) / min_speed + wait_time))

® the_gate.position = raised)
END Railroad_Crossing

PROCESS SPECIFICATION Sensor
LEVEL Top_Level

IMPORT
pos_real, max_speed, min_speed, dist_R_to_I, dist_I_to_out, response_time

EXPORT
train_in_R, enter_R

CONSTANT
enter_dur, exit_dur: pos_real

VARIABLE
train_in_R: boolean

AXIOM
response_time ³ enter_dur

& (dist_R_to_I + dist_I_to_out) / min_speed ³ response_time + exit_dur
ENVIRONMENT

/* only one train will be in the region at the same time on the same track */
Call(enter_R, now)

& EXISTS t: time
( t ³ 0 & t £ now
& Call2(enter_R, t))

® Call(enter_R) - Call2(enter_R) > (dist_R_to_I + dist_I_to_out) / min_speed

INITIAL
~train_in_R

INVARIANT
/* once a sensor reports a train, it will keep reporting a train at least as long as it takes the

fastest train to cross the region */
Change(train_in_R, now)

& ~train_in_R
® 0 £ now - ((dist_R_to_I + dist_I_to_out) / max_speed - response_time)

& FORALL t: time
( now - ((dist_R_to_I + dist_I_to_out) / max_speed - response_time) £ t

& t < now
® past(train_in_R, t))

SCHEDULE
/* train will be sensed within enter_dur of call */

( now ³ response_time
& Call(enter_R, now - response_time)

® train_in_R)
/* sensor will be reset when the slowest train is beyond the crossing */
& ( now ³ (dist_R_to_I + dist_I_to_out) / min_speed

& Call(enter_R, now - (dist_R_to_I + dist_I_to_out) / min_speed)
® ~train_in_R)
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TRANSITION enter_R
ENTRY [TIME: enter_dur ]

~train_in_R
EXIT

train_in_R
TRANSITION exit_I

ENTRY [TIME: exit_dur ]
train_in_R

& now - Start(enter_R) ³ (dist_R_to_I + dist_I_to_out) / min_speed - exit_dur
EXIT

~train_in_R
END Top_Level

END Sensor

PROCESS SPECIFICATION Gate
LEVEL Top_Level

IMPORT
pos_real, gate_position, max_speed, dist_R_to_I, dist_I_to_out, wait_time,
response_time, sensor_id, the_sensors.train_in_R

EXPORT
position

CONSTANT
lower_dur, raise_dur, up_dur, down_dur: pos_real,
raise_time, lower_time: pos_real

VARIABLE
position: gate_position

AXIOM
wait_time ³ raise_dur + raise_time + up_dur

& dist_R_to_I / max_speed ³ response_time + lower_dur + lower_time +
down_dur + raise_dur

& dist_R_to_I / max_speed ³ response_time + lower_dur + lower_time +
down_dur + up_dur

INITIAL
position = raised

SCHEDULE
/* gate will be down before fastest train reaches crossing */

( EXISTS s: sensor_id
( s.train_in_R
& now - Change(s.train_in_R) ³ dist_R_to_I/max_speed - response_time)

® position = lowered)
/* gate will be up after slowest train exits crossing and enough time has elapsed for

gate to be raised */
& ( FORALL s: sensor_id

( FORALL t: time
( now - wait_time £ t

& t £ now
® ~past(s.train_in_R, t)))

® position = raised)
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IMPORTED VARIABLE
/* once a sensor reports a train, it will keep reporting a train at least as long as it takes

the fastest train to cross the region */
FORALL s: sensor_id

( Change(s.train_in_R, now)
& ~s.train_in_R

® 0 £ now - ((dist_R_to_I + dist_I_to_out) / max_speed - response_time)
& FORALL t: time

( now - ((dist_R_to_I + dist_I_to_out) / max_speed - response_time) £ t
& t < now

® past(s.train_in_R, t)))

TRANSITION lower
ENTRY [TIME: lower_dur ]

~ ( position = lowering
| position = lowered)

& EXISTS s: sensor_id
(s.train_in_R)

EXIT
position = lowering

TRANSITION down
ENTRY [TIME: down_dur ]

position = lowering
& now - End(lower) ³ lower_time

EXIT
position = lowered

TRANSITION raise
ENTRY [TIME: raise_dur ]

~ ( position = raising
| position = raised)

& FORALL s: sensor_id
(~s.train_in_R)

EXIT
position = raising

TRANSITION up
ENTRY [TIME: up_dur ]

position = raising
& now - End(raise) ³ raise_time

EXIT
position = raised

END Top_Level
END Gate

END Railroad_Crossing


