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Abstract

Grid computing aims to connect large numbers of ge-
ographically and organizationally distributed resources to
increase computational power, resource utilization, and re-
source accessibility. In order to effectively utilize grids,
users need to be connected to the best available resources
at any given time. As grids are in constant flux, users cannot
be expected to keep up with the configuration and status of
the grid, thus they must be provided with automatic resource
brokering for selecting and ranking resources meeting con-
straints and preferences they specify. This paper presents a
new OGSI-compliant resource selection and ranking frame-
work called Surfer that has been implemented as part of
NASA’s Information Power Grid (IPG) project. Surfer is
highly extensible and may be integrated into any grid en-
vironment by adding information providers knowledgeable
about that environment. Surfer invisibly and seamlessly cor-
relates results from different providers into a single unified
view seen by the user.

1. Introduction

Grid computing [4] aims to connect large numbers of ge-
ographically and organizationally distributed resources to
increase computational power, resource utilization, and re-
source accessibility. In order to effectively utilize grids,
users need to be connected to the best available resources
at any given time. In small, single organization grids, users
may be able to adequately select resources for simple re-
quests on their own. Even small grids, however, are in
constant flux with resource availability changing minute by
minute due to user activity and system failures. Large,
multi-organization grids are much more chaotic where re-
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source types, connectivity, support levels, software envi-
ronments, availability, etc. may vary greatly with a greater
probability of resource failures. In such an environment,
users cannot possibly keep up with the configuration and
status of the grid nor potentially even which resources they
may have access to, thus they will tend to choose only those
resources they are directly familiar with. This leads to im-
balanced resource utilization, which results in longer wait
times and a decrease in productivity. To maximize the ben-
efits of grid computing, users must be provided with au-
tomatic resource brokering for selecting and ranking re-
sources meeting constraints and preferences they specify.

Although resource brokering is a fundamental service
that is vital to the usability of every grid environment, it is
difficult to provide a general purpose solution for all such
environments since each one has its own idiosyncrasies
such as job models, resource types, and sources of infor-
mation. Typical resource brokers are tightly entangled with
these idiosyncrasies, eliminating the possibility of reuse
across the grid community. By removing any dependence
on such idiosyncrasies, and, specifically, decoupling the ac-
cess to resource information from its utilization in the re-
source selection process, it becomes possible to provide a
general framework upon which resource brokers for any en-
vironment can be built. The key features required in such a
framework include an expressive and extensible constraint
language, easy integration and correlation of new resource
types and information sources, and accommodation of pre-
existing information retrieval optimizations.

This paper presents Surfer, theSelection andRanking
Framework forExtractingResources. The job of Surfer is
to surf the pool of potential grid resources and extract the
highest ranked resources meeting user specified constraints
and preferences. Surfer has no built-in bias towards any
job model or selection policy, thus is suitable for inclusion
in any grid environment by adding information providers
knowledgeable about that environment. These providers de-
termine the types of resources that are selectable and sup-
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ply functions constrainable in resource requests. Provider
functions are allowed to have arbitrary argument and re-
turn types or may be macros to be expanded before pro-
cessing. Function definitions may hide arbitrarily complex
back-end information retrieval that may be optimized as de-
sired. Surfer has been implemented as an OGSI-compliant
grid service that can also be embedded directly into Java
applications through its APIs or into non-Java applications
through its XML-based command-line interface.

Surfer is part of NASA’s Information Power Grid (IPG)
project [7]. The goal of the IPG is to develop new tech-
nologies to facilitate the use of the grid and enable scien-
tific discovery. Several prototype services have been im-
plemented including the Execution Service for submitting
and managing jobs, the Prediction Service [18] for estimat-
ing execution, wait, and transfer times, the Cardea [10] ser-
vice for dynamic resource access control, the Naturalization
Service [8] for automatically establishing the execution en-
vironment for user applications, and the Surfer framework,
which is the subject of this paper.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the selection and ranking
framework. Section 4 describes a prototype resource bro-
ker implemented for the IPG using this framework. Finally,
section 5 presents conclusions and future work.

2. Related Work

The most well known resource selection framework is
the Condor matchmaker [15]. In this framework, providers
and consumers describe their properties and requirements as
classified advertisements (classads), which are pushed to a
central matchmaker that does the matching. Each classad is
a mapping between attributes and values that may addition-
ally contain a constraint, which describes the requirements
that must be met by any matching classads, and a ranking
function, which describes the order of preference when sev-
eral classads satisfy the constraint.

The original matchmaking framework only allows a re-
quest to be matched with a single classad, but has been ex-
tended in several ways to overcome this limitation. In [12],
a request may be matched to a set of classads of the same
type, where requests may contain aggregate requirements
that all classads of the set must satisfy. The aggregation
functions include min, max, and sum. In [16], classads have
been extended by allowing them to contain multipleports,
each of which may be matched with other classads of spe-
cific types and characteristics. Thus, a single request may
be matched with multiple heterogeneous classads.

For matchmaking schemes to work, all parties must uti-
lize the same vocabulary of attribute names and values. To
facilitate interoperability between disparate vocabularies,
[19] extends matchmaking with ontologies, which allows

conditions to be defined under which differing attribute val-
ues may still be matched (e.g. “Linux” and “FreeBSD”
match “Unix”). This approach, however, does not yet sup-
port multi-classad matching. RedLine [11] incorporates all
three classad extensions by allowing heterogeneous classad
sets, aggregate set requirements, and ontological vocabular-
ies. Requests are specified as a set of constraints, which are
solved as a constraint satisfaction problem.

All of the matchmaking models suffer from the same
limitation. Namely, they rely on a push-based model of in-
formation, where every possible attribute of interest must be
computed a priori and stored within a classad to be utilized
during selection. Many attributes critical to resource selec-
tion, however, are too dynamic or complex to precompute
and/or too large to store temporarily. Examples include ac-
cess control, which may be completely dynamic based on
a resource’s current state and the user’s grid identity as in
[10] and network bandwidth, which may include measure-
ments between a fully connected network of thousands of
resources. In general, a more flexible pull-based model is
needed to utilize such information, which can be computed
on demand to control size and complexity.

A variety of resource brokers are available with their
respective grid environments/scheduling systems. Exam-
ples include resource brokers for Legion [2], European Data
Grid [9], ALICE Environment [17], UNICORE [13], Fraun-
hofer Resource Grid [6], Nimrod/G [1], and GridLab [14].
In general, these brokers were designed for their specific
grid environment, thus are not easily extensible, nor are eas-
ily incorporated into other environments. In some cases,
they are dependent on a specific job model or job submis-
sion functionality. In other cases, they are dependent on
specific information sources that may not be available else-
where. Finally, many of them have built-in selection poli-
cies such as a specific load-balancing scheme that may be
unsuitable and/or undesirable in other environments.

3. Surfer Framework

Surfer is a framework for the selection and ranking of
resources, where a resource is considered to be any entity
that may require selecting such as computers, storage sys-
tems, software, data, etc. Figure 1 shows the architecture
of Surfer, which is described in greater detail in section 3.5.
Processing begins when a user or client application makes
a resource selection request. The request is rewritten from
a boolean expression to a set expression utilizing function
calls and queries to providers that supply information. The
rewritten request is then evaluated into an actual set of re-
source sets, which is finally ranked and returned to the user.
The following sections describe this process in detail.
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Figure 1. Surfer architecture

3.1. Requests

A Surfer request consists of a set of individual resource
requests, a global constraint, a global ranking function,
and a number of resource tuples to return. Each individ-
ual request consists of an identifier, a resource type, a lo-
cal constraint, and a local ranking function. The global
constraint describes the requirements that must be met by
the complete set of resources while each local constraint
describes the requirements that must be met by any re-
sources selected for that particular resource request. Sim-
ilarly, the global ranking function describes how complete
resource sets should be ordered while each local ranking
function describes how individual resources should be or-
dered. Note that the global/local distinction is purely for no-
tational convenience and natural encapsulation as resources
are evaluated against thecomposite constraintin which all
global/local constraints are conjoined together and thecom-
posite ranking functionin which all global/local ranking
functions are multiplied together.

Figure 2 shows an example request for two resources: a
storage resource with more than 20 GB of free disk space
and a compute resource running IRIX64 with at least 128
free CPUs and more than 10 GB of free physical memory,
where the host name of each resource must be the same. The
final set of resource pairs must be ordered by the value of
100 times the compute resource’s free CPUs plus the stor-
age resource’s free disk space. Note that this figure is only
a text representation of a request object and does not depict
a specific syntax for making requests with the exception of
the constraints and the ranking functions.

Constraints and ranking functions are written in typed
first-order logic without quantification, which consists of
constants, variables, functions, and boolean, arithmetic,
and relational operators. The constants include numbers,

Global:
Constraint:

$c1.host == $s1.host
Ranking:

100 * $c1.freeCpus +
$s1.freeMb

Resource:
Id: s1
Type: StorageResource
Constraint:

freeMb > 20000

Resource:
Id: c1
Type: ComputeResource
Constraint:

freeCpus >= 128
&& freePhysicalMemoryMb > “10G”

&& operatingSystem == “IRIX64”

Figure 2. Resource Broker request

strings, and the boolean values true and false. The variables
consist of the set of resource identifiers given in the individ-
ual requests and are used to reference resource attributes.
In figure 2, the variables are “c1” and “s1”, which are used
in the global constraint to reference the host name of the
compute and storage resource, respectively.

Supported operators include standard boolean, arith-
metic, and relational operators as well as “contains” and
“!contains” for strings and collection types such as sets and
lists and the inline conditional operator “?:” a la C and
Java. All of the arithmetic, relational, and set operators
are extensible based on the Number, Comparable, and Col-
lection classes of Java, respectively. That is, any operands
conforming to these interfaces may be used. For the rela-
tional operators, if only one operand conforms to the Com-
parable interface, but its associated type has a constructor
based on the other operand type, an appropriate instance
will be created to make the two operands comparable to
each other. This is especially useful for handling differ-
ent unit types. For example, in figure 2, the “freePhysi-
calMemoryMb” function returns a Comparable-conforming
type “MemorySize”, which has both Number and String
constructors allowing memory sizes such as “10G” to be
easily normalized and compared to purely numeric values.

The key element of the specification language is the
set of functions available, which varies depending on the
providersthat have been integrated into the system. Surfer
has no built-in functions. Every function available is de-
fined by a provider that has access to the information that
function supplies. Figure 2 shows some of the functions
available in the example resource broker discussed in sec-
tion 4, which was developed using the Surfer framework.
In the figure, “freeCpus”, “freePhysicalMemoryMb”, “op-
eratingSystem”, “freeMb”, and “host” are all functions sup-
plied by a specific provider. Users are not required to know
which provider supplies which function. Surfer invisibly
and seamlessly correlates results from different providers
to give a single unified view of the functions available.

While Surfer requests are similar to the gangmatch clas-
sad requests of [16], its pull-based model of information
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allows its language to be significantly more expressive. In-
formation that is too large, complex, or dynamic to be pre-
computed and pushed to a central matchmaker, can be easily
utilized by calling an appropriate provider function. Surfer
also does not suffer from the vocabulary mismatch issues
associated with classads as users can only utilize the spe-
cific strongly-typed functions that are supplied by providers
hooked into the system.

The result of a Surfer request is atuple set, which is a set
of tuples such that each tuple is a map from variable names
(i.e. resource ids) to resources that has been optimized for
space and intersection performance. Figure 7 shows three
example tuple sets. Each column shows a different variable
value. For example, S2 has three tuples with variables v1
and v2 where (v1, v2) takes the values (a, a), (b, a), and (b,
b). The tuple set resulting from a request contains the spec-
ified number of tuples and is ordered by value of the com-
posite ranking function from highest to lowest. Each tuple
contains a resource selection for each resource id requested
and satisfies the conjunction of all specified constraints.

3.2. Providers

The core of the resource brokering framework are the
providers that supply functions that may be constrained and
queries that may be executed to produce resources with ap-
propriate attribute values. Functions can be defined to take
objects of any number and class type as arguments and to
return objects of any class type. This allows significant flex-
ibility and arbitrary extensions to the constraint and rank-
ing language. Functions may also bemacros, which are
processed during rewriting and transform strings to strings.
Macros provide an easy abstraction mechanism for hiding
complexity and grouping commonly used expressions.

Queries take a set of variable names and a boolean ex-
pression utilizing those variables and return a tuple set of
resources satisfying the expression. The set of functions
supplied by a provider defines the functions that are con-
strainable within the boolean expression of queries to that
provider.

Providers are not required to supply queries, but users
can only request resource types for which there exists a
query in some provider. This is by necessity as only queries
supply raw sets of resources. Resources are considered to
be objects with a set of identifying attributes that are unique
to each resource (e.g. host and directory for a storage re-
source) and a set of dynamic attributes that may vary over
time (e.g. free disk space). Figure 3 shows the Java inter-
face that every resource must implement. The getAttributes
method must return the map from attribute names to values.
The isMergeable method takes a resource and must return
whether that resource has the same identifying attributes as
the current resource. Finally, the mergeAttributes method

takes a resource and merges its attributes into the current
resource’s attributes. This method is used to merge the at-
tributes of resources with the same identifying attributes
that may have been produced by different providers during
evaluation. A BaseResource class provides default imple-
mentations for getAttributes and mergeAttributes.

public interface Resource {
        public Map getAttributes();
        public boolean isMergeable(Resource res);
        public boolean mergeAttributes(Resource res);
}

Figure 3. Resource interface

Figure 4 shows the Java interface that every provider
must implement, which consists of two methods for func-
tions and two for queries. The getFunctions method must
return the set of functions that the provider supplies. The
hasQuery method takes a list of resource types and must re-
turn a boolean indicating whether that type of query is sup-
ported. The callFunction methods takes a function name
and an array of arguments and must produce an actual value
based on these arguments. The runQuery method takes a set
of variable names and a boolean expression utilizing those
variables and must return the resources satisfying that ex-
pression. Section 3.5 describes how new providers are inte-
grated into the framework.

        public Object callFunction(String name, Object[] args);

        public TupleSet runQuery(Set vars, AST ast);
        public List runQueries(List varSets, List asts);

one of {

public interface Provider {
        public Set getFunctions();
        public boolean hasQuery(List types);

one of {        public Object[] callFunctions(String name, Object[] argArrays);

}

Figure 4. Provider interface

Providers are responsible for optimizing access to their
back-end information sources. In most cases, this involves
caching results for future use. A simple built-in caching
optimization supplied by the framework is to cache the dy-
namic attributes of any resources returned in queries. When
this is done, functions based on these attributes can be
called with minimal cost. The attributes are kept consis-
tent across different providers using the isMergeable and
mergeAttributes methods of the Resource interface during
evaluation. For some providers, it may also be possible
to increase overall throughput by processing function calls
and queries in batches. This is especially likely in cases
where a provider uses other services on different hosts to
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implement its back-end functionality. To avoid limiting any
potential provider optimizations, providers can implement
alternative batch interfaces for callFunction and runQuery.
A BaseProvider class provides implementations of each in
terms of the other, thus whichever is not implemented will
be based on the one that is.

3.3. Rewriting

In order to produce an appropriate tuple set from a
boolean constraint, that constraint must first be rewritten
into an expression using the functions and queries that the
providers supply. Four set operations are utilized to de-
scribe these expressions: intersections, unions,queries, and
reductions. Intersections and unions are defined as normal
but with special handling for tuple sets. A query takes a
provider id, a set of variables, and a boolean expression in
those variables and returns a tuple set such that each tuple
has a resource mapping for every variable that together sat-
isfy the boolean expression. A reduction takes a tuple set
and a boolean expression and returns the subset of the given
set that satisfies the boolean expression. In general, a query
is more efficient than a reduction as each element in a re-
duction set may necessitate a call to multiple providers.

Rewriting begins with a request’s composite constraint,
where conjunctions are changed to intersections, disjunc-
tions to unions, and negations are distributed along the way.
True constants are changed to universal sets (i.e. the set rep-
resenting all possible resource combinations) and false con-
stants to empty sets. Any macros are expanded by calling
the appropriate provider functions. Relations are changed
to queries if all functions within the relation belong to the
same provider and that provider supports queries in the req-
uisite number and types of variables. All other relations are
changed to reductions on the universal set, with each func-
tion transformed into an explicit call to an explicit provider.

Although the expression generated from this initial trans-
formation could be evaluated as is, several optimizations are
possible. In particular, it is desirable to (1) eliminate univer-
sal sets as they are expensive to compute, (2) minimize the
number of queries to run by combining queries to the same
provider, and (3) minimize the number of function calls by
minimizing the size of each reduction set.

To achieve these goals, the unification axioms shown in
figure 5 are applied to the initial set expression. Lower num-
bered axioms are applied before higher numbered axioms.
Axiom 1 actually consists of four separate axioms, the most
important of which is the second, which will eliminate a
universal set when it is intersected with anything else. Ax-
ioms 2 and 3 are used to combine queries when possible.
Axioms 4 and 5 are used to minimize reduction set size.
Although axiom 5 can always be applied in place of axiom
4, it is undesirable to choose the order in which the reduc-

tions occur at this point since the number of elements in
each set is unknown until they are actually evaluated. Fi-
nally, axiom 6 is used both to eliminate universal sets and
to minimize reduction set size by pushing intersections into
unions to maximize the impact of the other axioms. The
end result of rewriting will be an expression of the form⋃
i reducei(

⋂
j queryj ,

∧
k tk).

1. A ∩ ∅ = ∅ A ∩ 1 = A A ∪ ∅ = A A ∪ 1 = 1

2. query(p, V1, t1)∩query(p, V2, t2) = query(p, V1∪V2, t1∧t2)
when p has queries inV1 ∪ V2

3. query(p, V1, t1)∪query(p, V2, t2) = query(p, V1∪V2, t1∨t2)
when p has queries inV1 ∪ V2

4. reduce(A, t1) ∩ reduce(B, t2) = reduce(A ∩B, t1 ∧ t2)

5. A ∩ reduce(B, t) = reduce(A ∩B, t)

6. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Figure 5. Unification axioms

Figure 6 shows the composite constraint of figure 2 after
rewriting to reduced set form. All of the macros have been
expanded from an easily readable form to the specific names
used by one of the providers. Note that “freeCpus” has been
expanded to the value representing 100 times the number of
free CPUs in the last minute divided by 100. This is an ex-
ample of how complex details can be hidden from the user
by supplying appropriate macros. All universal sets have
been eliminated, queries have been combined as much as
possible, and the one reduction set has been minimized by
bringing all other terms inside. Note that the two remaining
queries cannot be combined even though their providers are
the same because that particular provider does not support
queries of multiple types at once.

reduce(query(pid2, {s1}, $s1.Mds_Fs_freeMB > 20000)
∩ query(pid2, {c1},

$c1.Mds_Cpu_Total_Free_1minX100 / 100 >= 128
&& $c1.Mds_Memory_Ram_Total_freeMB > "10G"
&& $c1.Mds_Os_name == “IRIX64”),

call(pid2, Mds_Host_hn, [$c1]) == call(pid2, Mds_Host_hn, [$s1]))

Figure 6. Rewritten constraint

3.4. Evaluation

After a request has been rewritten into reduced set form,
it must be evaluated to produce an actual tuple set, which
must then be ordered according to the composite ranking
function. This involves utilizing the functions and queries
supplied by the providers and computing the results of set,
arithmetic, and relational operations. Although the rewriter
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has performed expression-level optimizations, it is the re-
sponsibility of the solver to optimize the actual evaluation
of rewritten form. The main goals of optimization are to
(1) utilize available provider optimizations, (2) run identi-
cal queries only once, and (3) control set expansion.

To take advantage of any available provider optimiza-
tions, function calls and queries are always grouped into
batches and sent to the batch interfaces of callFunction and
runQuery in the providers. Identical queries may result
from the application of axiom 6 in figure 5. To reduce
the negative impact of this axiom, queries are gathered, run
once, and the results duplicated where necessary.

Since Surfer allows an arbitrary number of resources to
be selected at once, the number of tuples that can be gen-
erated during evaluation is exponential in the number of
resources requested as each position within the tuple can
potentially take any resource value of the appropriate type.
Thus, the most critical optimization of the solver is to con-
trol this complexity to the greatest extent possible. This
exponential expansion occurs during intersections between
tuple sets with disjoint variable spaces as each tuple in one
set may generate a new tuple for each tuple of the other set.
Unions do not have this problem as the new set size is guar-
anteed to be at most the sum of the sizes of the two sets.

Although the final size of an intersection involving mul-
tiple sets is fixed, the sizes of the intermediate sets may vary
with the order in which the individual intersections are eval-
uated. The intermediate sizes affect the total number of tu-
ples that must be compared, thus directly affect execution
time. Figure 7 shows three tuple sets and the number of tu-
ple intersections required for each evaluation order. As can
be seen, even for small sets, the number of tuple intersec-
tions is significantly impacted by the evaluation order.

S1
v1

a

S2
v1 v2

a a
b a
b b

S3
v2 v3

a a
a b
b a
b b

∩ order ∩’s

(S1 ∩ S2) ∩ S3 7
(S1 ∩ S3) ∩ S2 16
(S2 ∩ S3) ∩ S1 18

Figure 7. Intersection order

Surfer optimizes intersection evaluation order in two
ways. The basic assumption of these optimizations is that
sets will share variables that help reduce the resulting set
size. When intersections occur outside of a reduction, the
evaluation order is selected according toestimated set size.
For two sets S1 and S2, let the set of variables shared be-
tween tuples of S1 and S2 be denoted by V and the maxi-
mum number of resources possible for eachvi in V be de-

noted byσi. The estimated set size ofS1 ∩ S2 is then de-
fined as|S1| · |S2|/

∏|V |
i=1 σi. That is, for each tuple of S1,

the number of tuples of S2 that can be expected to match
that tuple and be added to the resulting set decreases by a
factor of σi for each variable shared. Thus, sets that are
very sparse will be intersected before denser sets and sets
with more shared variables will be intersected before those
with less. For simplicity, the implementation uses the same
σi for all resource types, which may be configured as de-
scribed in section 3.5.

When intersections occur within reductions, a different
strategy is used. After rewriting, all reductions will be in the
form reduce(

⋂q
j=1 Sj ,

∧r
k=1 tk). This form can be rewrit-

ten toreduce(reduce(
⋂s
i=1 Si, t1)∩

⋂q
j=s+1 Sj ,

∧r
k=2 tk)

when no variable of termt1 is a variable of any setSj . Thus,
any intermediate result can be reduced by an individual term
as long as that result contains all of the sets relevant to that
term. In this case, the evaluation order is chosen based on
terms. Terms are chosen in ascending number of variables
and by involved estimated set size when the number of vari-
ables is the same. The idea is that the fewer variables a term
involves, the fewer sets will have to be intersected before
they can be reduced. After a term is chosen, intersections
are performed as in the non-reduction case.

Figure 8 shows the time required to generate differ-
ent numbers of resource tuples by intersection on a 750
MHz Pentium 3 system with 256 MB of memory running
FreeBSD. The curves show the three different methods by
which the given number of tuples were generated based on
an initial request for four resources with 120 possible val-
ues for each. In the queries only case, each of the four re-
source dimensions was reduced by the same factor using
a constraint on each resource variable (e.g. $s1.freeMb >
10000). In the reductions only case, relations between pairs
of variables were added to reduce the possible set size (e.g.
$s1.freeMb + $s2.freeMb > 10000). Finally, in the queries
and reductions case, both techniques were used. When the
number of resource tuples generated is small compared to
the number of tuples possible, reductions have a higher
overhead than queries. When the number of tuples gener-
ated becomes high enough, however, only the intersections
dominate the computation.

Although the intersection times for even fairly large sets
are reasonable, once the final tuple set is generated, each
tuple must still be evaluated against the composite ranking
function. If the resulting set is very large and the ranking
function is complex, this evaluation may take significant
time. To guard against this possibility, Surfer provides a
configurable threshold that limits the maximum number of
tuples that are evaluated when intersecting two sets. When
more than the threshold tuple pairs are to be evaluated, a
sampling function is generated that selects threshold pairs
of tuples from the two sets. Those tuples are intersected
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Figure 8. Intersection time vs. # tuples

to produce the resulting set, while the remaining tuples are
discarded.

With a threshold limitation comes a loss of precision as
all possible resource combinations are no longer evaluated.
There is also no guarantee how many tuples the resulting set
will contain since providing such a guarantee could poten-
tially require every tuple pair to be evaluated. In an attempt
to keep the most desirable tuples, Surfer uses the composite
ranking function as its sampling function. Each tuple set is
ranked individually according to this function and then the
square root of the threshold number of the highest ranked
tuples of each set are intersected. Since the ranking function
may reference resources that are not defined in intermediate
tuple sets, the evaluation routines replace undefined values
with constants.

Once the final tuple set has been produced, the last step
of evaluation is to order this set by the composite ranking
function. First, the solver’s evaluation routines are used to
compute a rank for each tuple. The tuple set is then sorted
based on these values. Finally, the requested number of
the highest ranked tuples are returned to the user. Figure
9 shows the total evaluation time of the queries only case of
figure 8 for different threshold values. As can be seen, the
evaluation time is relatively constant once the threshold is
reached allowing a maximum acceptable response time to
be set based on the threshold, if desired.

3.5. Implementation

Surfer is implemented in Java as an Open Grid Ser-
vices Infrastructure (OGSI) compliant service within the
Open Grid Services Architecture (OGSA) framework [5].
In the OGSA model, all grid functionality is provided by
namedgrid servicesthat are created dynamically upon
request. The reference implementation of OGSI is the
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Figure 9. Evaluation time vs. # tuples

Globus Toolkit [3], which provides grid security through
the Grid Security Infrastructure (GSI), low-level job man-
agement through the Globus Resource Allocation Manager
(GRAM), data transfer through the Grid File Transfer Pro-
tocol (GridFTP), and resource/service information through
the Monitoring and Discovery Service (MDS).

Figure 1 shows the architecture of the Surfer broker-
ing framework. In this figure, a client application uses the
Surfer client API to request a given number of resources
of specific types and characteristics. This request is con-
verted to XML and transmitted to an instance of the Surfer
service running within an OGSI container. The rewriter
component is then used to rewrite the request into a sin-
gle constraint and from there to the reduced set form of
that constraint. This expression is then given to the solver
component, which evaluates the given set. Any calls and
queries are evaluated using the correlator component, which
provides a common interface for accessing all the provider
functionality. The solver also ranks the resource tuples
based on the ranking function given by the client applica-
tion. Finally, the resulting set is returned back to the client
and converted from XML form back to a tuple set of re-
sources meeting the specified characteristics.

Extending Surfer from a framework into a usable re-
source broker for a specific grid environment involves two
steps. First, a set of providers must be implemented that
conform to the Provider interface of section 3.2. These
providers should reflect the information available in the
given grid environment. The higher the quality of infor-
mation supplied within the functions of these providers,
the higher the quality of the selection results. Once the
provider implementations are ready, the second step is mod-
ifying Surfer’s Web Service Definition Language (WSDL)
parameters. These parameters include the sampling thresh-
old, the expected size measureσi, and, most importantly,
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the providers parameter, which supplies the fully qualified
class names of the provider implementations. The providers
parameter is used by the correlator component to load all the
available providers into the framework.

After configuration, Surfer is available as a usable re-
source broker. Users or client applications can request the
types of resources that are selectable, the functions that are
constrainable, or can make a request to return resources of
the appropriate types with specific characteristics.

4. IPG Resource Broker

An initial prototype of a resource broker for the NASA
IPG has been developed using the Surfer framework. Even-
tually, this broker will have providers for most of the IPG
services under development and will allow constraints on
resource access based on Cardea, software locations, ver-
sions, and dependencies based on the Naturalization Ser-
vice, wait, execution, and transfer predictions based on
the Prediction Service, etc. For the initial prototype, two
providers were implemented: an MDS provider and an
MDS macro provider. The MDS provider supplies func-
tions and queries based on the fields available in the MDS
(version 2) servers of the IPG. The MDS macro provider
supplies macros to abstract the sometimes cryptic names of
MDS into more human readable forms.

The MDS provider supplies information about two types
of resources: compute resources and storage resources.
Compute resources consist of a host name, a queue name,
and a queue type while storage resources consist of a host
name and a directory name. Together, the two providers
supply 80 functions with 65 of them coming from the MDS
provider and 15 from the MDS macro provider.

Figure 2 shows a request to the IPG Resource Bro-
ker. This request uses only functions from the MDS macro
provider, which are expanded to functions of the MDS
provider as shown in the rewritten request of figure 6. This
request examined 10,920 resource combinations and ran in
6.14 seconds, the bulk of which was associated with query-
ing six separate MDS servers.

5. Conclusions and Future Work

This paper has described Surfer, theSelection and
RankingFramework forExtractingResources. Surfer al-
lows new information providers and resource types to be
easily and seamlessly integrated into the system and allows
arbitrary extensions to its constraint and ranking language
through provider functions and flexible evaluation of built-
in arithmetic, relational, and set operators. Its pull-based
model allows information sources too large and/or too com-
plex for push-based models to be efficiently incorporated

into the resource selection process. By decomposing re-
source brokering into a framework independent of any spe-
cific grid environment, Surfer simplifies resource broker de-
velopment and can reduce duplication of effort across the
grid community.

There are a number of directions for future research.
Some efficiency and accuracy improvements may be pos-
sible in the evaluation routines of the solver. One optimiza-
tion is to allow providers to give the cost of calling their
functions, which may allow term reductions to be evaluated
in a more efficient order. Another possibility is to allow
user-defined sampling functions for pruning intermediate
resource sets since sampling based on the composite rank-
ing function may not always yield optimal results. Finally,
the accuracy of estimated set size computations may be im-
proved by using different heuristics or by allowing the ex-
pected size measureσi to be configurable for each resource
type or be automatically derived during evaluation.

Another area requiring more study is handling conflicts
between providers such as different providers that supply
the same information about the same resources or supply the
same information, but about different subsets of resources.
The former case could potentially be handled by allowing
providers to supply a freshness measure to their information
while an aggregate provider class may handle the latter.

Additional functionality may be added to the specifica-
tion language as necessary such as a richer set of built-in
operators. Finally, The IPG resource broker will be greatly
enhanced in the near future. Namely, a variety of new infor-
mation providers will be integrated into the system as they
become available as part of the IPG project.
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