
Facilitating the Portability of User Applications

in Grid Environments

Paul Z. Kolano

NASA Advanced Supercomputing Division, NASA Ames Research Center,
M/S 258-6, Mo�ett Field, CA 94035 U.S.A.

kolano@nas.nasa.gov

Abstract. Grid computing promises the ability to connect geographi-
cally and organizationally distributed resources to increase e�ective com-
putational power, resource utilization, and resource accessibility. For grid
computing to be successful, users must be able to easily execute the same
application on di�erent resources. Di�erent resources, however, may be
administered by di�erent organizations with di�erent software installed,
di�erent �le system structures, and di�erent default environment set-
tings. Even within the same organization, the set of software installed
on a given resource is in constant �ux with additions, upgrades, and re-
movals. Users cannot be expected to understand all of the idiosyncrasies
of each resource they may wish to execute jobs on, thus must be provided
with automated assistance. This paper describes a new OGSI-compliant
grid service (the Naturalization Service) that has been implemented as
part of NASA's Information Power Grid (IPG) project to automatically
establish the execution environment for user applications.

1 Introduction

Grid computing [6] promises the ability to connect geographically and organiza-
tionally distributed resources to increase e�ective computational power, resource
utilization, and resource accessibility. Real world experiences with grids [1,11],
however, have had mixed results. While gains in computational power were even-
tually achieved, they were only made a reality after signi�cant e�orts to get user
applications running on each suitable resource. Di�erences across resources in
installed software, �le system structures, and default environment settings re-
quired manually transferring dependent software and setting environment vari-
ables. This problem is common even in non-grid environments. Users frequently
encounter missing or incompatible shared libraries (.so �les) on Unix systems or
missing dynamic link libraries (.DLL �les) on Windows systems when attempt-
ing to execute binaries that have been transferred from a similar system. Even
in a language that is designed for portability, such as Java, this same problem
exists. That is, a Java application can only be executed on a system that has all
of the classes installed on which it depends. If all dependent software is present,
an application still may not be able to execute if the environment variables are
not set such that it can �nd that software. In grid environments, this problem is

1

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

only ampli�ed. For grid computing to be successful, users must be able to easily
execute the same application on di�erent resources without being expected to
understand or compensate for all of the idiosyncrasies of each resource.

In general, the ability of an application to migrate from one system to another
depends on a number of issues. A given application may have dependencies over
which an ordinary user has no control such as processor architecture, operating
system type, operating system version and features, system architecture, and
system con�guration. These dependencies limit the set of resources on which
the application can execute. An application may also have other dependencies
such as software availability, software locations, software versions and features,
and environment variable settings. Although the set of resources can also be
limited based on these dependencies, this is undesirable as it may eliminate
the best resources from consideration even though the user can satisfy these
dependencies by copying �les and setting path variables appropriately.

The typical approach used for dealing with software dependencies is to rely
on statically linked executables or custom packages containing all required soft-
ware. The drawbacks of statically linked executables are well known including
overly large executables, ine�cient use of memory, and hard-coding library bugs
into code. Building custom software packages correctly and writing an associated
setup script may require expert knowledge of dependency analysis techniques,
di�erences in operating systems, and environments required by di�erent soft-
ware types. Every minute spent by a user constructing a software package or
transferring an unnecessarily large �le is another minute of the user's time or
resource allocations that could be better spent on their real work.

Naturalization is de�ned1 as the process of �adapting or acclimating (a plant
or animal) to a new environment; introducing and establishing as if native�. This
paper describes a new grid service (the Naturalization Service) developed as part
of NASA's Information Power Grid (IPG) project to automatically naturalize
user applications to grid resources. The functions of this service include (1) au-
tomatically identifying the dependencies of user applications with support for
executables, shared libraries, Java classes, and Perl and Python programs, (2) es-
tablishing a suitable environment by transferring dependent software and setting
key environment variables necessary for each application to run, and (3) man-
aging a �exible software catalog, which is used to locate software dependencies
based on both centrally managed and user controlled mappings.

Section 2 presents related work. Section 3 gives a brief overview of the NASA
IPG. Section 4 describes the steps involved in establishing the execution envi-
ronment for an application. Section 5 gives the implementation details of the
Naturalization Service. Finally, section 6 presents conclusions and future work.

2 Related Work

There are several projects that address issues similar to those addressed by this
work. The Globus Executable Management (GEM) [2] system was implemented

1 American Heritage Dictionary at http://www.bartleby.com/61/6/N0030600.html

2

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

to allow di�erent versions of an executable to be staged to a machine based
on its processor architecture type and operating system version. Executables are
retrieved from a network-based executable repository. This system only supports
executables, however, and has no support for shared libraries, Java classes, or
Perl or Python programs, nor does it support automated dependency analysis.

The Uniform Interface to Computing Resources (UNICORE) [4] allows jobs
to be built from platform-independent abstract job operations, which are trans-
lated into concrete operations that can be executed on an actual system. The
translation relies on a static con�guration �le located on each resource describing
the software installed there. For example, an abstract job executing �ls� would be
mapped using the con�guration �le to a concrete job executing �/bin/ls�. This
approach requires extra administration every time software is added to, removed
from, or updated on a system, it only supports executables, and it only allows
software to run on systems that already have all required software installed.

The Automatic Con�guration Service [10] automatically manages the instal-
lation and removal of software for component-based applications according to
user-speci�ed dependency information. This service has goals similar to those of
the Naturalization Service, but is implemented as a CORBA service as opposed
to an OGSI-compliant service. A limitation of this service is that the user must
fully specify all dependencies manually. There is also no discussion of managing
environment variables, which are required for an application to �nd installed
software and which di�er according to software type. In addition, this service
uses a centralized repository, thus cannot take advantage of software individually
deployed by users.

Installers, package managers, and application management systems [3] are
typically used to manage the software installed on standalone systems and sys-
tems on the same network. While these approaches greatly increase the ability
of system administrators to provide a consistent and stable set of software across
an organization's resources, they are only of use when the administrator knows
what software will be needed. Since grids enable users from di�erent organiza-
tions with di�erent software requirements to share resources, these mechanisms
do not provide the necessary level of support.

Replica management systems such as Reptor [8] provide high-level mecha-
nisms for managing the replication, selection, consistency, and security of data
to provide users with transparent access to geographically distributed data sets.
Much of this functionality is also suitable for managing software across grid re-
sources and is, in fact, the basis of part of the Naturalization Service. Replica
management systems do not address software speci�c issues, however, such as
automatic dependency analysis and environment variable settings.

3 NASA Information Power Grid

NASA's Information Power Grid (IPG) [9] is a computational and data grid
spanning a number of NASA centers that consists of various high performance su-
percomputers, storage systems, and data gathering instruments scattered across

3

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

the United States. The goal of the IPG is to increase the utilization and acces-
sibility of existing resources, ultimately resulting in an increase in productivity
at each NASA center.

Although a grid provides access to additional resources, as the number of
resources increases, it becomes more and more di�cult to use those resources. A
user must know the name of each resource, which resources they have accounts
on, how many allocations they have on each resource, which resources are least
loaded, what software is installed on each system, etc. This becomes a daunting
task even when the number of resources is small. For this reason, the IPG project
is also developing a set of grid services to facilitate the use of the grid [13].
Three prototype services have been implemented including a Resource Broker
for selecting resources meeting speci�ed constraints, a Job Manager for reliable
job execution, and the Naturalization Service, which is the subject of this paper.

In the current job model of the IPG, jobs consist of a sequence of �le and
execution operations, each of which may have an associated cleanup sequence.
File operations consist of operations on �les and directories including copying,
moving, and removing �les and creating and removing directories. Execution op-
erations describe an application to execute on a given resource. For the purposes
of this paper, an execution operation will consist of a host to run on, the path of
the application on that host, and an environment mapping from variable names
to variable values. An actual IPG Job Manager job consists of a number of other
�elds that are not relevant to the discussion of the Naturalization Service in-
cluding a queue name, a project name, a working directory, stdin, stdout, and
stderr redirection, a number of processors, and memory requirements.

Within the current IPG architecture, a job to execute and a set of resource
constraints are submitted to the Resource Broker component from a client appli-
cation. The resource constraints consist of restrictions on resource characteristics
(e.g. number of processors, operating system type, processor type, etc.) that must
be satis�ed for the application to properly execute. The Resource Broker selects a
set of resources satisfying those constraints and incorporates those selections into
the job and passes it on to the Naturalization Service. The Naturalization Ser-
vice then transforms the job as necessary to establish the execution environment
for each application, which is passed on to the Job Manager for execution. These
services are based on the Globus Toolkit [5], which provides grid security through
the Grid Security Infrastructure (GSI), low-level job management through the
Globus Resource Allocation Manager (GRAM), data transfer through the Grid
File Transfer Protocol (GridFTP), and resource/service information through the
Monitoring and Discovery Service (MDS).

4 Establishing Execution Environments

The execution environment for an application on a given resource consists of the
software existing on that resource and the settings of the environment variables
when the application runs. For each execution operation in a given job, the
function of the Naturalization Service is to:

4

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

1. Determine the software that the execution operation application requires
2. Provide a location for that software on the execution operation host by:

(a) Determining if the software exists on the execution operation host
(b) Finding a source for any missing software
(c) Copying missing software to the execution operation host

3. Set environment variables based on provided software locations

A list of dependencies is associated with each execution operation. A depen-
dency consists of basic requirements including a type, a name, a version range,
and a feature list as well as information gathered during processing including a
source host and path, a target path, and an �analyzed �ag� to indicate its anal-
ysis status. The Naturalization Service currently supports �ve software types:
executables, shared libraries, Java classes, and Perl and Python programs. The
dependency name holds the canonical name for the software depending on its
type (e.g. ls, libc, java.util.List, File::Basename, xml.sax.xmlreader, etc.). The
version range consists of a minimum and/or maximum version required. The
feature list contains features that the dependency must support. For example,
the application might require the w3m browser compiled with SSL support. Cur-
rently, versions are only supported for shared libraries and features are not yet
supported as a way to derive these automatically has not yet been determined.

The source host and path, target path, and analyzed �ag are used to store
information as processing proceeds. Stages are only executed if the information
they provide has not already been gathered. Thus, a job for which the execution
environment has already been fully established can be sent through the Natu-
ralization Service without e�ect. This allows the user to have complete control
of job processing. A user can execute stages individually, can specify dependen-
cies manually, can turn analysis o�, can specify an exact source for software,
can specify a location where software already exists, or any combination thereof.
The Naturalization Service will �ll in any gaps in the environment left by the
user or return the job unchanged if no modi�cations are necessary.

Although the Naturalization Service makes its best attempt to establish the
execution environment for a job, it is not possible to guarantee that the resulting
environment will always be suitable. There are three scenarios for which such a
guarantee cannot be made:

1. Application depends on A, but A cannot be located anywhere
2. Application depends on A, which depends on B, but analysis techniques used

on A are inadequate to determine B is a dependency
3. Application does not depend on A, but analysis reports A is a dependency

Since executing a job for which the execution environment has not been fully
established leads to wasted CPU cycles, it is desirable to notify the user prior to
job execution. For the last two scenarios, nothing can be done besides document-
ing the limitations of the analysis techniques. The �rst scenario, however, can
be identi�ed by searching the resulting job for empty target paths and false ana-
lyzed �ags. The Naturalization Service provides convenience methods for �nding
unresolved dependencies to determine if a job should be executed as is.

5

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

A pedagogical example job will be used to illustrate the functionality of
the Naturalization Service. This job consists of running a Python program �ad-
dall.py�, which uses a module �Adder.py� as shown in Figure 1. Figure 3 shows the
original job and the actual modi�cations made to that job as it passes through
the �ve stages of the Naturalization Service discussed in the following sections.

4.1 Dependency Analysis

In order to establish the environment for a particular application, it is �rst
necessary to analyze exactly what software the application needs. In general,
this problem is undecidable as applications can dynamically load or execute a �le
derived from an arbitrarily complex computation at any point during execution
(e.g. char *lib = complex_func(); dlopen(lib)). Although this type of analysis is
infeasible for the general case, the large majority of cases are much simpler and
can be handled by appropriate static analysis techniques.

The Naturalization Service �rst collects the complete set of host/�le pairs
that need to be analyzed for the given job, which includes the execution operation
applications and any manually-speci�ed dependencies with a source location. File
operations in the job are traversed to �nd the original location of each �le. A
single job is then executed on each collected host in parallel. This job runs a
self-contained analysis shell script on the list of �les located on that host. The
output of this job is a list of dependencies for each �le, which are added as
dependencies to the appropriate execution operations.

Analyzing software on the system it originates on is advantageous since that
system is likely to be the one that the user has tested it on. Thus, it is likely to
have all dependencies present, even if they are in non-standard locations such
as the user's home directory. This facilitates complete analysis and provides
a source for �les to be transferred to the target system. The main concern is
execution time, since it is undesirable for these jobs to wait in a heavily loaded
FIFO queue for execution. Since analysis only requires access to �les, however,
it is not necessary for the analysis jobs to run on the main compute node of a
resource. Instead, they can simply run on the �le server for that node, either as
GRAM jobs or GSI-enabled ssh jobs, which will execute almost immediately.

Currently, the Naturalization Service analyzes executables, shared libraries,
Java classes (both class and jar �les), and Perl and Python programs. Executable
and shared library analysis is the most straightforward as the Executable and
Linking Format (ELF) [15] standard used by Unix systems requires that an
executable contain the names of the shared object dependencies necessary for
it to execute. This information can be obtained using the �ldd� or �elfdump�
commands. Like the ELF format, the Java class �le format [14] also contains
dependency information. Namely, it contains the list of classes that the given
class requires to execute. The analysis code uses a slightly modi�ed version of
the com.sun.jini.tool.ClassDep utility of the Jini Software Kit2.

2 Available at http://www.sun.com/software/jini

6

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

addall.py (add #'s from stdin)
import sys
import string
import Adder
adder = Adder.Adder()
for line in sys.stdin.readlines():
n = string.atoi(line)
adder.add(n)

print adder.sum()

Adder.py (maintain sum)
class Adder:
def __init__(self):
self.value = 0

def add(self, n):
self.value += n

def sum(self):
return self.value Instances

EDG

OGSI

Tomcat

Application
Client

Exec
Host m

MySQL
Server

Host nHost 1

Analysis

Client
NS Instance

NS
XML Job

XML Job

JobJob

...

...

Queries

Results

Dependencies

Locations

Host 1

Exec

Analysis

D
ep

en
de

nc
ie

s

Files

LFNs
PFNs/

PFNs
LFNs/

LRC/RMC

Fig. 1. Example job Fig. 2. Naturalization Service implementation

Target: /usr/local/lib/python2.2/string.py

Environment:

 LD_LIBRARY_PATH = {

 $LD_LIBRARY_PATH,

 /usr/lib}

 PYTHONPATH = {

 $PYTHONPATH,

 $HOME/py.7514,

 /usr/home/kolano,

 /usr/local/lib/python2.2,

 /usr/local/lib/python2.2/

 lib−dynload}

Target: /usr/local/lib/python2.2/lib−dynload/strop.so

CreateDirectory File Operation:

 DstHost: ipg03.nas.nasa.gov

 DstDirectory: $HOME/py.7514

Copy File Operation:

 SrcHost: pc205.nas.nasa.gov

 SrcDirectory: /home/kolano/

 repository/python

 SrcFile: Adder.py

 DstHost: ipg03.nas.nasa.gov

 DstDirectory: $HOME/py.7514

 DstFile: Adder.py

Target: $HOME/py.7514/Adder.py

 Target: ??

 Target: ??

 Target: ??

 Library Dependency (analyzed):

 Name: libc_r

 Version: [4, 4]

 Host: ipg03.nas.nasa.gov

 Directory: /usr/lib

 File: libc_r.so.4

 Library Dependency (analyzed):

 Name: libm

 Version: [2, 2]

 Host: ipg03.nas.nasa.gov

 Directory: /usr/lib

 File: libm.so.2

 Library Dependency (analyzed):

 Name: libutil

 Version: [3, 3]

 Host: ipg03.nas.nasa.gov

 Directory: /usr/lib

 File: libutil.so.3

Target: /usr/lib/libc_r.so.4

Target: /usr/lib/libm.so.2

Target: /usr/lib/libutil.so.3

Additional Operations: ??

 Environment: ??

 Target: ??

 File: python

 Host: ipg03.nas.nasa.gov

 Directory: /usr/local/bin

Execution Operation (??):

 Python Dependency (??):

 Name: addall

 Host: pc205.nas.nasa.gov

 Directory: /home/kolano

 File: addall.py

 Additional Dependencies: ??

 Target: ??

 Target: ??

 Python Dependency (analyzed):

 Name: strop

 Host: pc205.nas.nasa.gov

 Directory: /usr/local/lib/

 python2.2/lib−dynload

 File: strop.so

 Source: ??

 Python Dependency (analyzed):

 Name: string

 Host: pc205.nas.nasa.gov

 Directory: /usr/local/lib/python2.2

 File: string.py

 Python Dependency (??):

 Name: Adder

 Target: ??

analyzed

 Host: pc205.nas.nasa.gov

 Directory: /home/kolano/

 repository/python

 File: Adder.py

analyzed

analyzed

Original Job
Analyze Dependencies
Locate Dependencies
Lookup Dependencies
Transfer Dependencies
Set Variables

Target: /usr/home/kolano/addall.py

Fig. 3. Stages of job transformation

7

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

Unlike ELF executables and libraries and Java class �les, Perl and Python
programs do not contain explicit dependency information. These types of pro-
grams must either be textually searched for relevant module usage (e.g. �use� or
�require� in Perl and �import� in Python) or must be partially evaluated using
features of their corresponding compilers such as introspection. The Natural-
ization Service analysis code is based on the Perl Module::ScanDeps3 module,
which uses the former approach, and the Python module�nder module4, which
uses the latter.

After this stage, Figure 3 shows that three Python dependencies have been
added to the example job based on the analysis of �addall.py� as well as three
library dependencies from the analysis of the �python� executable. The execution
operation and all of its dependencies have been marked as �analyzed� with the
exception of the Adder Python dependency, whose source could not be found,
thus could not be analyzed.

4.2 Dependency Location

Even though di�erent resources may have di�erent sets of software installed,
there is a good chance that they also share a signi�cant base of common software.
Every piece of software that does not have to be transferred equates to a decrease
in the time an application must wait to execute. Thus, after determining the
software on which a particular application depends, the Naturalization Service
next determines if the software already exists on the target system. While this
problem is not undecidable as the number of �les on a system is �nite, it is
impractical to search every �le on a system. Thus, the search space must be
limited by path variables. Since there is no guarantee these paths are complete
or that software is stored in standard locations, there is no guarantee that this
procedure will �nd a particular �le even if it actually exists on the system. This
problem is ampli�ed through the use of the Globus GRAM as jobs executed by
the GRAM job manager do not necessarily run under the user's default shell, so
do not incorporate the user's default environment. In this case, even if the user
has the path variables set up appropriately, the job still might not be able to �nd
all existing software. In some cases, the user may not have a permanent account
on a system, thus may not have the environment set up properly to begin with.
Also, the default shell might not be the shell that the user actually uses. This
is common on systems where the user cannot control the default shell or where
more advanced shells such as bash are not allowed as login shells.

To compensate for this problem, two strategies are employed. First, paths
are added according to the Filesystem Hierarchy Standard [12] for Unix systems.
This guarantees that most common software will be located as all major Unix
distributions conform to this standard. Next, the locator gathers user-de�ned
and system-default environment variable settings from standard shells including
bash, csh, ksh, sh, tcsh, and zsh. A variable �var� can be read from a shell �<sh>�

3 Available at http://search.cpan.org/perldoc?Module::ScanDeps
4 Available as part of the Python 2.3 base distribution at http://www.python.org

8

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

using �<sh> -c 'echo $var� '. Variables gathered include LD_LIBRARY_PATH
and variants, PATH, CLASSPATH, JAVA_HOME, PERLLIB and variants,
PYTHONHOME, and PYTHONPATH. Once the paths are set, �les are located
by type, using �ls� for executables and libraries and the corresponding interpreter
for Java, Perl, and Python dependencies. It is assumed that if the interpreter is
not available, then no dependencies of that type exist on the system.

After this stage, Figure 3 shows that all dependencies of the example job have
been located on the target system except for the Adder Python dependency.

4.3 Dependency Lookup

Ideally, after the analysis and location stages, every dependency has either been
located on the target system or a source for it has been found during analysis.
Since this cannot be guaranteed, however, a �nal attempt is made to �nd any
unresolved dependencies in a software catalog. This catalog utilizes the Local
Replica Catalog (LRC) and Replica Metadata Catalog (RMC) of the European
DataGrid (EDG) project [8]. The LRC stores one-to-many mappings from logical
�le names (LFNs) constructed from software type, name, supported operating
system, and version to Globally Unique Identi�ers (GUIDs). The RMC stores
many-to-one mappings from these GUIDs to physical �le names (PFNs) where
the associated software actually resides. Note that the roles traditionally taken by
these components have been reversed to accommodate the uniqueness constraints
imposed on both sides of LRC/RMC mappings by the EDG implementation.

Since dependency analysis has already been performed by this stage, the
software catalog also stores the pre-identi�ed dependencies of each PFN, which
are recursively added as dependencies and looked up as necessary. In this case,
the LRC maps each PFN to a set of GUIDs, each of which is mapped by the
RMC to an LFN identifying a speci�c dependency.

Using a catalog instead of a repository allows for a �exible approach to soft-
ware management. As long as a resource is accessible to the �le transfer mech-
anisms of the IPG Job Manager, the software on that resource can be utilized
by the Naturalization Service. If an organization desires a permanent repository,
it can dedicate a set of resources to the task with an appropriate repertoire of
software and map LFNs into the �le systems of those resources. Otherwise, the
LFNs can simply point to the locations of software on existing systems. The
design also allows users to manage personal software repositories. The Natural-
ization Service provides a user interface to add and remove mappings from LFNs
in a personal namespace based on their grid identity to the PFNs of choice. Thus,
users can maintain a collection of software that they frequently use on their per-
sonally selected resources, which will be utilized by the Naturalization Service
as a source for the software required by their jobs. For a given LFN, the cur-
rent implementation �rst selects the user's PFN, if it exists, or if not, selects the
�rst matching PFN from the main catalog. Future versions of the Naturalization
Service will perform more intelligent selection based on locality, reliability, etc.

After this stage, Figure 3 shows that the one dependency without a source
or target location, the Adder Python dependency, now has a source. In addition,

9

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

it has been marked as �analyzed� based on its dependency information in the
software catalog, which indicated that no additional software was required.

4.4 Dependency Transfer

Transferring the dependencies to the target system is relatively straightforward.
One issue, however, is making sure that an appropriate directory hierarchy is
created for Java, Perl, and Python dependencies. For example, Java expects
non-jar'd class �les to be located in a directory structure based on the class
name. Thus, to copy the class �le �FooBar.class� associated with a class named
�foo.bar.FooBar� to a directory �/basedir� in CLASSPATH, it must actually be
copied to �/basedir/foo/bar/FooBar.class�. Otherwise, Java will not be able to
�nd the class. The Perl and Python cases are similar.

Another issue at this stage is dependency reuse. A job may contain a sequence
of execution operations on the same machine. The dependencies of di�erent
execution operations may overlap, thus should only be transferred once before
the �rst operation that requires them. The Naturalization Service keeps track of
which �les need to be transferred and copies them at the appropriate stage.

After this stage, Figure 3 shows that two �le operations have been added
to the example job to create a directory for and to copy the one dependency
without a target location, the Adder Python dependency, to the target system.

4.5 Variable Setup

The �nal step in establishing the execution environment for a job is setting
the environment variables of each execution operation so that all its dependen-
cies can be located during execution. At this stage, as many dependencies as
possible either have a location where they currently reside on the target sys-
tem or a location where they will reside after a transfer from elsewhere. Thus,
the Naturalization Service simply adds each dependency's location to the path
variable appropriate for that dependency's type. As in the previous stage, care
must be taken when handling Java, Perl, and Python dependencies. For the
example in the previous section, if a Java class named �foo.bar.FooBar� has a
future location of �/basedir/foo/bar/FooBar.class�, the CLASSPATH variable
must contain �/basedir� and not �/basedir/foo/bar� for Java to properly �nd
the class. For these cases, the Naturalization Service traverses the location back
the appropriate number of directories based on the name. Again, this also applies
to Perl and Python modules, but not to Java jar �les.

After this stage, Figure 3 shows the execution operation of the example job
now has environment settings based on the existing and created locations of its
dependencies. At this point, the example job has been fully transformed.

5 Implementation

An initial prototype of the Naturalization Service has been implemented in Java
with the dependency analysis and location modules written as Bourne shell

10

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

scripts. The Naturalization Service runs as an Open Grid Services Infrastructure
(OGSI) compliant service within the Open Grid Services Architecture (OGSA)
framework [7]. In the OGSA model, all grid functionality is provided by named
grid services that are created dynamically upon request. The newest version of
Globus, version 3.0 (GT3), is the reference implementation of OGSI and provides
all of the functionality of GT2 as grid services.

Figure 2 shows the current implementation of the Naturalization Service.
In this �gure, a client application uses the Naturalization Service client API to
request the establishment of the execution environment for a given job. The Nat-
uralization Service client converts the Java job object into XML for transmission
to an Apache Tomcat server running an OGSI container. The OGSI container
creates an instance of the Naturalization Service and invokes its �establishEnvi-
ronment� method with the given job. The Naturalization Service uses the OGSI
GRAM service to execute the analysis script on each host with �les requiring
analysis in parallel. All jobs are executed using the grid credentials of the client
application user, thus users are not given any additional privileges beyond what
they normally have. After all dependencies have been gathered, the location
script is then executed in parallel on each execution operation host with unre-
solved dependencies. For any dependencies that could not be located or for which
no source could be found, instances of the EDG LRC and RMC are queried in
an attempt to �nd a source. At this point, the Naturalization Service sets up the
return job to copy dependencies as necessary and sets the environment variables
appropriately. The job is returned in XML to the Naturalization Service client,
which converts the job back into a Java object for the client application.

The Naturalization Service has been fully tested on FreeBSD systems and the
analysis and location scripts have been tested on IRIX, SunOS, and FreeBSD.
It has not yet been deployed in the NASA IPG as GT3 is not mature enough
for production IPG usage. The Naturalization Service also has not yet been
integrated with the IPG Resource Broker or Job Manager, which are built on
top of GT2, but will be integrated with the next versions of these services, which
are currently being implemented and will be OGSI-compliant.

6 Conclusions and Future Work

This paper has described the IPG Naturalization Service, which is an OGSI-
compliant grid service that has been implemented to automatically establish the
execution environment for user applications. The Naturalization Service analyzes
applications to determine their software dependencies, locates the software on
the target system, if possible, or elsewhere, if not, arranges the transfer of soft-
ware as necessary, and sets the environment variables to allow each application
to �nd its required software. The Naturalization Service has a �exible design
that gives the user considerable control over job processing including choosing
which steps to perform and managing the source for frequently used software in
a personal software catalog. The Naturalization Service allows users to execute
jobs on resources that may have been previously unsuitable due to missing soft-

11

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

ware dependencies with no or minimal user intervention. The end result is an
increase in user productivity by signi�cantly reducing setup time and hassles and
increasing the pool of available resources, allowing for faster turnaround times.

There are a number of directions for future research. One ine�ciency of the
current design is that if two di�erent jobs require the same dependency on the
same resource, the Naturalization Service will copy the dependency twice. One
solution for this would be to cache software on resources for use by later jobs.
More study is necessary to determine how and when this can be done while
preventing malicious or accidental modi�cations to cached software.

Another area for further study is providing additional dependency types and
analysis capabilities. Additional types include shell scripts, make�les, and data
dependencies. Additional capabilities include determining �cross-type dependen-
cies� such as executables invoked from Perl scripts. While the general case is
undecidable, this analysis may be possible for simple invocation styles that oc-
cur frequently in practice (e.g. system(�/bin/ls�, @args)).

Implementation issues to be addressed in future versions include full IPG
deployment, advanced software installation including packages and compilation
in addition to basic �le transfer, and full dependency version and feature support.

References

1. Allen, G.: Experiences From the SC'02 Demos. Global Grid Forum 7, Mar. 2003. Available at
http://www.zib.de/ggf/apps/meetings/gab-allen.pdf.

2. Argonne National Laboratory: Extending the ACTS Toolkit for Wide Area Execution: Sup-
porting DOE Applications on Computational Grids, Distributed Systems Laboratory, 1999.
Available at http://www.mcs.anl.gov/dsl/preport.htm.

3. Carzaniga, A., Fuggetta, A., Hall, R.S., Heimbigner, D., van der Hoek, A., Wolf, A.L.: A Charac-
terization Framework for Software Deployment Technologies. Technical Report CU-CS-857-98,
Dept. of Computer Science, Univ. of Colorado, 1998.

4. Erwin, D.W., Snelling, D.F.: UNICORE: A Grid Computing Environment. 7th Intl. Euro-Par
Conf., Aug. 2001.

5. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl. J. Supercom-
puter Applications. 11(2) (1997) 115-128.

6. Foster, I., Kesselman, C. (eds.): The GRID: Blueprint for a New Computing Infrastructure.
Morgan-Kaufmann, San Francisco, CA (1999).

7. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure
WG, Global Grid Forum, June 2002.

8. Guy, L., Kunszt, P., Laure, E., Stockinger, H., Stockinger, K.: Replica Management in Data
Grids. Global Grid Forum Informational Document, GGF5, July 2002.

9. Johnston, W.E., Gannon, D., Nitzberg, B.: Grids as Production Computing Environments:
The Engineering Aspects of NASA's Information Power Grid. 8th IEEE Intl. Symp. on High
Performance Distributed Computing, Aug. 1999.

10. Kon, F., Yamane, T., Hess, C., Campbell, R., Mickunas, D.: Dynamic Resource Management and
Automatic Con�guration of Distributed Component Systems. 6th USENIX Conf. on Object-
Oriented Technologies and Systems, Jan. 2001.

11. Rogers, S., Tejnil, E., Aftosmis, M.J., Ahmad, J., Pandya, S., Chaderjian, N.: Automated CFD
Parameter Studies on Distributed Parallel Computers. Information Power Grid Wkshp., Feb.
2003. Available at http://www.ipg.nasa.gov/workshops/workshop2003/rogers.ppt.

12. Russell, R., Quinlan, D. (eds.): Filesystem Hierarchy Standard � Version 2.2 Final. May 2001.
Available at http://www.pathname.com/fhs.

13. Smith, W., Lisotta, A.: IPG Services. Information Power Grid Wkshp., Feb. 2003. Available at
http://www.ipg.nasa.gov/workshops/workshop2003/smith.ppt.

14. Sun Microsystems: The Java Virtual Machine Speci�cation. 2nd edn. (1999). Available at http:
//java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html.

15. Unix System Laboratories: System V Application Binary Interface. 3rd edn. Prentice Hall,
Englewood Cli�s, NJ (1993)

12

In Proc. of the 4th IFIP Intl. Conf. on Distributed Applications and

Interoperable Systems, Paris, France, Nov. 18-21, 2003

