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Abstract. From a security standpoint, it is preferable to implement least priv-
ilege network security policies in which only the bare minimum of TCP/UDP
ports on internal hosts are accessible from outside the perimeter. Unfortunately,
organizations with such policies can no longer communicate using common mul-
tiport protocols that require randomly chosen ports for auxiliary connections.
This paper introduces a new approach for maintaining such communication un-
der least privilege while achieving maximum performance. By dynamically mod-
ifying perimeter ACLs, inbound auxiliary connections are only allowed through
the perimeter at exactly the times required. These modifications are made trans-
parently to external users and with minimal changes to internal configuration. A
prototype implementation of the Dynamic Perimeter Enforcement system, called
Diaper, has been implemented and tested with several applications.
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1 Introduction

A fundamental dictate of computer security is the Principle of Least Privilege, which
states that “every program and every user of the system should operate using the least
set of privileges necessary to complete the job” [28]. In networks, privilege tradition-
ally corresponds to the set of TCP/UDP ports that are allowed to traverse a perimeter
established by some form of perimeter enforcer such as a firewall or router/switch with
access control lists (ACLs). A typical least privilege network policy might contain the
rules (1) allow all outbound traffic to non-blacklisted hosts, (2) allow inbound traffic in
direct response to established outbound traffic, (3) allow inbound traffic to a small set
of well-known server control ports, and (4) deny all other traffic. In this policy, users
on external hosts are limited to the least possible set of privileges necessary to provide
some predetermined set of capabilities to them. Namely, they are only allowed to initi-
ate connections to the control ports of designated network services, which are already
bound, thus cannot be used for any other purpose. Internal users can generate arbitrary
outbound traffic to non-blacklisted hosts and receive inbound responses to that traffic,
but internal services they start are not directly accessible from beyond the perimeter.
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While such a policy works well for single port protocols such as SSH and HTTP,
it breaks down when utilizing multiport protocols. Figure 1 shows the basic multiport
protocol models. Each model consists of a client and a server, one of which is inside
and one of which is outside the perimeter created by the perimeter enforcer. To request
a specific service provided by the server, the client connects to a statically determined
control port on the server, after which it establishes a set of auxiliary connections over
dynamically determined ports. Each server is designated as either active or passive. An
active server is one that initiates the auxiliary connections to the client. A passive server
is one that listens for the auxiliary connections from the client. While traditionally as-
sociated with the FTP protocol, which uses separate control and data channels, these
same models are just as applicable to modern protocols for grids, high performance file
transfer, voice over IP, multimedia over IP, and other applications.
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Fig. 1. Basic multiport service models Fig. 2. Communication breakdown

By default, the least privilege policy above supports the internal active server and
external passive server models. Since all inbound auxiliary connections are denied, it
does not support the internal passive server or external active server models. Figure 2
shows the breakdown in multiport protocols when two sites both utilize a least privilege
policy. As can be seen, it is impossible for the two sites to communicate since the
models that are supported by one site are exactly the models not supported by the other.

The easiest solution for many organizations is to permanently open up the perimeter
and allow inbound traffic to a subset of unprivileged ports, which can then be used for
auxiliary connections. Since these ports are accessible from anywhere, however, it is
easier for attackers to hijack or interfere with auxiliary connections. In addition, appli-
cations only listen on these ports at specific times related to control port traffic, thus
these ports are usually not bound until that time and can be used for other purposes.
These may range from running software still under development to running unautho-
rized services or authorized services with unauthorized versions and/or configurations
to Trojans acting without a user’s knowledge waiting for malicious connections. The
ports associated with these uses are now directly accessible from outside the perimeter
and are subject to attack and/or unauthorized utilization.

Several approaches try to resolve this problem without resorting to permanent perime-
ter openings such as protocol-aware firewalls, routers/switches with network login, spe-
cialized proxies, new low-level protocols, etc. These approaches suffer from various
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drawbacks including the need for changes to client/server software and/or practices, re-
quiring special trust relationships with other entities, substantial degradation of network
performance, and inability to handle arbitrary protocols and applications.

This paper presents a new approach for Dynamic Perimeter Enforcement called
Diaper, which provides a general-purpose mechanism for maintaining least privilege
network security policies while still supporting full utilization of multiport protocols.
Diaper protects a site from unauthorized network flows by dynamically applying ACLs
on the perimeter enforcer that temporarily allow specific paths through the perimeter
at exactly the times required. The appropriate paths and times are derived by observ-
ing system calls from within the services that require them. Since Diaper operates at
the system call level, it can guarantee that temporary openings cannot be utilized for
other purposes since ports are already bound at the time they are allowed through the
perimeter. Perimeter openings are only authorized for a single external host, thus mak-
ing it more difficult to hijack or interfere with auxiliary connections. Diaper requires
no changes to software or practices outside of the perimeter, only minimal changes in-
side, and can be deployed in configurations varying in size from a single host running a
software firewall to an organization running multiple hardware perimeter enforcers. Fi-
nally, since Diaper utilizes the ACLs of network devices themselves, it does not degrade
network performance allowing protocols to operate at the highest speeds possible.

This paper is organized as follows. Section 2 presents related work. Section 3 de-
scribes perimeter observation using system call interposition. Section 4 discusses how
the perimeter is opened and closed. Section 5 describes implementation and perfor-
mance. Finally, Section 6 presents conclusions and future work.

2 Related Work

There are a variety of efforts related to the problem addressed by this paper. Stateful
firewalls such as Cisco’s IOS Firewall [5] can interpret the control channels of specific
protocols to determine when an auxiliary port needs to be opened between a given pair
of hosts. Only unencrypted protocols can be supported, however, and such support is
generally limited to a small set of standardized protocols. To increase support for new
protocols, the NAI Labs Wrappers [7] allow system administrators and even users to
add custom proxies into the firewall under the supervision of a system call wrapper
that prevents subversion of perimeter policy due to bugs or malicious code. This ap-
proach does not help with encrypted control channels, however, and is unsuitable for
high performance environments since it is deployed on software firewalls.

In general, even hardware stateful firewalls are unsuitable since they are signifi-
cantly behind the performance curve of routers and switches. For example, the Juniper
Netscreen-5400 is one of the few firewalls on the market with 10 gigabit interfaces [16],
but only supports 5 Gb/s per interface. The Force10 P10 intrusion prevention appliance
[8] operates at 10 Gb/s line-rate, but has no stateful capabilities. The first 10 Gb/s line-
rate router, however, was available from Juniper six years earlier [17]. This performance
lag is likely to continue as vendors move to 100 Gb/s and beyond.

Routers and switches often support another approach through network login mech-
anisms such as Cisco’s Lock-and-Key [6], where initially all network traffic is denied
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until users authenticate themselves, after which a static set of ports is opened up from
the originating host to internal resources. This approach supports maximum line-rates,
but requires users to perform additional authentication and typically opens more ports
than needed. Another built-in option is a virtual private network (VPN) [36], where an
external host or network can be granted access to the internal network using an au-
thenticated, encrypted connection. VPNs require either special trust relationships set
up between organizations or additional steps performed by the user. In addition, the
encryption used to guarantee privacy and integrity also degrades performance. For ex-
ample, the Juniper Netscreen-5400, which is one of the fastest existing VPNs, is only
capable of 2.5 Gb/s over each 10 gigabit interface [16].

SOCKS [21] is a protocol that allows clients to traverse firewalls through the use
of a proxy server that relays packets from one side of the firewall to the other. SOCKS
requires special software to communicate with SOCKS servers and external users must
have knowledge of which sites require SOCKS and which do not, which SOCKS server
is responsible for each host of a given site, and which set of authentication creden-
tials must be used to access each SOCKS server. In addition, since the SOCKS server
must relay every packet, but is not supported in high speed network devices, SOCKS is
unsuitable for high performance environments.

Hole punching [9] is a network address translation (NAT) traversal technique where
peers behind different NAT firewalls exchange contact information through a well-
known rendezvous server and then use a specific series of outbound messages to open
inbound paths through the firewall. Hole punching allows high performance communi-
cation, but requires special client software, knowledge of which sites utilize the tech-
nique and with which rendezvous servers, and a trust relationship with each server.

Many related projects are motivated by the use of grids across organization fire-
walls. The Globus grid middleware requires a large number of ports to be left open [38],
which creates many difficulties behind restrictive firewalls [1]. Hillier proposes the use
of a log reader to wait for a successfully authenticated Globus “ping”, after which it
parses the source host and adds an appropriate rule to the firewall to allow access to a
statically-defined range of ports from that host [12]. Dyna-Fire [11] is a dynamic fire-
wall service that allows a host to access specific ports after receiving an appropriate port
knocking sequence (i.e. a pattern of connection attempts to closed ports). Both of these
approaches are essentially network login mechanisms with the same disadvantages.

Condor is another grid middleware that requires many port openings [18]. Dynamic
Port Forwarding (DPF) [31] allows services on private internal hosts to lease external
IP address/port pairs from a NAT firewall, which are sent to external clients for use in
direct connections. Firewall requests are not authenticated, however, and the internal
host is opened up to all external hosts. Cooperative On-Demand Opening (CODO) [30]
adds more restrictive openings and basic authentication to DPF, but only supports basic
multiprocess applications and only when they are recompiled with the CODO library.
Generic Connection Brokering (GCB) [31] uses an external proxy to relay packets be-
tween external clients and internal servers, with drawbacks similar to SOCKS.

Voice over IP (VoIP) and multimedia over IP (MoIP) also use multiport communica-
tion models, thus are difficult to deploy behind firewalls [29]. Many proposed solutions
involve adding knowledge of related protocols such as the Session Initiation Protocol
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(SIP) into the firewall itself [22]. In the Distributed Dynamic Firewall Architecture [27],
control channels are observed by protocol-specific proxies, which direct filters to allow
and deny traffic as needed. Fung et al. enhanced SOCKS with additional UDP handling
to support the Real-Time Streaming Protocol (RTSP) [10]. These solutions are similar
to stateful firewalls with similar drawbacks.

An alternative approach is to let applications themselves control firewall behavior as
needed. The Firewall Control Protocol (FCP) [20] was proposed as a standard for fire-
wall query and control by applications that was originally motivated by the difficulties
of deploying SIP servers behind firewalls. This approach relies on the standardization
of FCP and its acceptance and integration by firewall vendors, however, which is a
long-term effort. Universal Plug and Play (UPnP) [23] defines a similar capability in
its Internet Gateway Device (IGD) specification, which allows clients to control UPnP-
enabled gateways to permit inbound network access when needed. The IGD specifica-
tion does not define any access control mechanisms, however, thus is only suitable for
home networks with minimal security requirements.

The multiport problem is an artifact of basic TCP/UDP design, which only allows
a single stream of data per port. Several new protocols such as the Stream Control
Transmission Protocol (SCTP) [32] have been proposed to enable multiplexing of many
streams into one. These protocols are not widely supported, however, thus cannot be
used with existing implementations of software and cannot take advantage of existing
higher level protocol support in network devices.

3 Perimeter Observation

Diaper is based on the notion of a pinhole, which is a dynamic rule that allows TCP/UDP
traffic to pass from a specific external host to a specific port on a specific internal host.
The basic approach is to open a pinhole exactly when the external host needs to estab-
lish an inbound auxiliary connection and to close that pinhole exactly when the external
host no longer needs the connection. By using this approach, sites with least privilege
policies can still communicate, but users cannot hijack pinholes for their own purposes
because the internal host will already be using the associated ports.

A single pinhole corresponds to a TCP/UDP ACL on a perimeter enforcer, which
is defined by the 5-tuple of protocol, source IP address, source port, destination IP ad-
dress, and destination port. Since pinholes only require basic ACLs, which can be done
at line-rate on many network devices, the pinhole approach supports performance at
the maximum capacity of the network itself. To successfully implement a pinhole ap-
proach, however, it is necessary to accurately determine three key pieces of information:
which internal ports will be used for auxiliary connections, when these connections are
needed, and which external host will initiate them.

3.1 Observer Location

This information may be observed at various locations in the network. The most ap-
pealing location is on the perimeter enforcer, which has access to all network traffic
passing between client and server. In this case, all setup is self-contained on the device
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mediating network traffic. Unfortunately, at this location, every protocol must be han-
dled differently, encrypted protocols cannot be supported at all, and hardware enforcers
can only support the limited set of unencrypted protocols implemented by the vendor.

The least desirable observer locations are on the external host and in the external
client/server. To open pinholes appropriately, users or software on external hosts must
be given the authority to do so, which gives them the capability to change the internal
site’s network security policy, thus does not conform least privilege. In addition, the
security mechanisms are no longer transparent since they require the installation of new
software or modifications to the invocation of existing software as well as managing
these changes across different sites that may require different configurations.

An observer on the internal host, but not in the internal client/server, requires no
external changes and has access to information beyond that of a perimeter observer such
as logs generated, kernel structures modified, etc. A log reader approach suffers from
imprecision due to the lag between when an activity is performed and when it is logged.
A kernel observer could provide the required information, but kernel development is
difficult and error-prone and would affect every process on the internal host.

The final alternative is an observer in the internal client/server itself, which has
access to detailed information about every aspect of program operation including vari-
ables, functions, system calls, etc. Modifying client/server source code is undesirable as
different implementations use different programming languages, data structures, nam-
ing conventions, error conditions, etc. that must all be handled differently. In addition,
these modifications must be kept up-to-date with the latest patches and revisions. Al-
though services may have very different implementations, they are all built on top of the
same set of standard system calls. Furthermore, with the advent of system call interpo-
sition [15], system calls can be changed dynamically on a per application basis without
changes to existing code. A set of such system call modifications is known as an in-
terposition agent. The application of this technique for the observation of perimeter
information is described in the next section.

3.2 Diaper Interposition Agent

All TCP and UDP sessions share the same basic flow of Standard C Library system
calls that occur between an initiator and a listener. In a TCP session, both parties create
a socket using socket(). The listener binds its socket to a local address and port num-
ber using bind() and then indicates its willingness to receive connections on the socket
using listen(). The initiator can then connect to the listening address using connect().
When the listener is ready to process inbound connections, it accepts one of the wait-
ing connections using accept(). Finally, the two parties communicate using read() and
write(), and at the completion of communication, they close their sockets using close().
UDP sessions are similar, but connectionless, thus after bind(), both parties can imme-
diately send and receive datagrams using sendto() and recvfrom(). Equivalent system
calls exist in the Windows Sockets API [24], but will not be discussed further.

In the models of Figure 1, clients and servers can be both initiators as well as lis-
teners and have identical network system call behavior after the establishment of the
control channel. Thus, the same Diaper interposition agent can be used to intercept the
system calls of internal passive servers as well as internal clients used to connect to
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external active servers. The agent processes the control channel appropriately based
on whether the wrapped application first connects outbound like a client or waits for
inbound connections like a server. The combined functionality allows the agent to ad-
ditionally handle mixed-mode applications, such as Iperf [13], that act as both a client
and a server with auxiliary connections in both directions.

The main challenge in observing the required information by intercepting system
calls is in grouping together separate unrelated system calls to obtain a complete picture
of the information. At the point just after a bind(), it is known in both TCP and UDP
sessions that a socket will be used to listen for external connections on a specific port
number. This is also when it is safe to open a pinhole to that port since after bind(),
a port can no longer be used by any other process on that host. The pinhole can be
opened from this time up until just before accept() or recvfrom(), neither of which can
succeed unless inbound traffic was already allowed to the port. Diaper opens a pinhole
immediately after every bind() on an external interface, as shown in Figure 5, except
the first bind() in the internal passive server case as that bind() is used to establish the
control channel. The intercepted bind() does not return to the caller until the pinhole
has been successfully opened or an error occurs.

To open a pinhole for an auxiliary connection requires knowledge of which exter-
nal host will initiate a connection, which is not known until an accept() or recvfrom()
completes on the same port. Thus, this information can only be obtained by associating
the auxiliary connection with a previously established control channel connection for
which the external host is already known. For clients, it is assumed that the control chan-
nel is established during the first outbound TCP/UDP connection from an unconnected
state, thus the external address for subsequent auxiliary connections is obtained from
the address in the last successful control channel connect() or sendto(). For servers, it
is assumed that the first externally bound TCP/UDP port is the control port, thus the
external address is obtained from each accept() or recvfrom() on this port.

The association of auxiliary ports with control ports must be handled differently
depending on the concurrency model of the client/server. The three major concurrency
models [25] are multiprocess, where each connection is managed by a separate process,
multithreaded, where each connection is managed by a separate thread, and multiplexed,
where all connections are managed by the same process/thread using non-blocking I/O.
Association in the multiprocess model is straightforward as each control connection is
managed by a different process that spawns its own auxiliary connection processes. In
this case, the external address in auxiliary processes is the address of the host connected
to the parent control socket. The multithreaded model is similar with each control con-
nection managed by a different thread that spawns its own auxiliary connection threads.
In this case, however, multiple threads may share the same memory space, thus care
must be taken to store the control thread IP address in a thread-safe location. The other
complication is the existence of multiple thread implementations. Diaper currently sup-
ports only POSIX threads. The basic flow of system calls in multiprocess and multi-
threaded servers is shown in Figure 3. The only difference is the use of pthread_create()
instead of fork() and pthread_exit() instead of exit() in the multithreaded model.

The multiplexed model is significantly different. In a multiplexed client/server, poll()
and/or select() system calls are used to determine which sockets have data waiting, thus
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preventing the single thread of execution from blocking during accept() or read(). Since
poll() and select() may return any number of sockets, a multiplexed client/server may
handle any number of arbitrarily ordered control and auxiliary connections in a single
round of implementation-dependent processing. Diaper manages this complexity by in-
tercepting poll() and select() and artificially limiting the concurrency during each round
to a single socket (with starvation prevention using a round robin approach). Since
auxiliary connections will only be created when a need for them arises during control
channel processing, the external address used to open an auxiliary pinhole can be ob-
tained from the socket that is currently being processed. The basic flow of system calls
in multiplexed servers is shown in Figure 4.
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write/read(con)
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Fig. 3. Multiprocess/multithreaded concurrency Fig. 4. Multiplexed concurrency

The final piece of information needed by the interposition agent is the point at which
each auxiliary connection is no longer needed so that the associated pinhole can be
closed. The basic approach is to examine each close() system call to determine if it is
closing a socket associated with an open pinhole. Care must be taken to avoid closing
pinholes prematurely due to duplication of sockets caused by accept() and fork(). A
close() on a listening socket that has already been accepted (i.e. not the accepted socket)
does not trigger a pinhole close nor does a close() on a listening socket that has not
been accepted, but which has been preceded by a fork(). In the latter case, closing the
pinhole becomes the responsibility of the child process. Pinholes are also closed in the
same manner within exit() and _exit() system calls and within signal handlers.

4 Perimeter Control

Once all of the required information has been observed by the interposition agent and
a pinhole request has been generated, that request must be carried out on the perimeter
enforcer. The perimeter controller is defined to be the system that interacts with the
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perimeter enforcer to dynamically open and close pinholes upon request. In order to
interact with the perimeter enforcer, the perimeter controller may need to be in special
proximity to it. For a hardware device such as a switch or router, the controller may need
to be on a host attached to the device’s management port. For a software enforcer such
as Iptables [14], the controller must usually be on the same host. Since network services
will be hosted and invoked on potentially many different systems, pinhole requests gen-
erated by an interposition agent must be authenticated and sent to the perimeter con-
troller host. After a request reaches the perimeter controller, it is authorized against a
set of allowed perimeter changes. Finally, the request is executed by making the appro-
priate ACL changes on the perimeter enforcer. Figure 5 shows the components of the
perimeter controller and the flow through a multiprocess internal passive server. Dia-
per was designed as a modular collection of servers with unique functions that can be
combined or replaced individually with different implementations as desired.

4.1 Pinhole Authentication

When a pinhole request is generated by an interposition agent, it must be sent to the
perimeter controller for execution. Before execution, the perimeter controller must ver-
ify that the request came from a legitimate source. The component on the perimeter
controller that authenticates requests is called the remote pinhole authentication server.
With the need to support the external active server model, remote authentication be-
comes subject to a number of complications. In this model, a client running inside
the perimeter must request pinholes for auxiliary connections from the external active
server. Clients are executed by normal users, but users must not be able to modify the
perimeter policy directly. Instead, requests are carried out indirectly on their behalf by
a component on the client host called the local pinhole authentication server.

Local Authentication The local authentication server runs with administrator privi-
leges and reads pinhole requests from interposition agents. After a request is received,
the local authentication server authenticates to the remote authentication server on the
user’s behalf, after which the request is passed on for further processing. Users cannot
read the remote authentication credentials, thus cannot make direct requests. The local
authentication server must also guarantee that only authorized clients in system direc-
tories that need pinholes are able to request them and that those clients are not under
the control of mechanisms such as LD_PRELOAD or ptrace().

To achieve these goals, authorized clients are wrapped with a simple setuid pro-
gram. The owner of the wrapper may be any valid user recognized by the local au-
thentication server and is designated as the local delegate for that particular client. The
wrapper first opens a temporary file descriptor used to communicate with the local au-
thentication server. It then clears unsafe environment variables such as LD_PRELOAD
and LD_LIBRARY_PATH and preloads the interposition agent. Finally, the wrapper
permanently drops all delegate privileges and executes the original command with the
original arguments. The FD_CLOEXEC flag is immediately set on the file descriptor by
the agent to prevent abuse by any local shell escapes, etc. that a client may implement.
User-level mechanisms for dynamically modifying application behavior are disabled by
the kernel since the wrapper is a setuid program.
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Fig. 5. Diaper event flow in multiprocess internal passive server

When a client’s interposition agent needs to make a pinhole request, it searches
for an open file descriptor not owned by itself. The ability to write to this descriptor
provides assurance that the client has been executed by the setuid wrapper. A second
descriptor is opened by the client itself based on a name provided by the local authen-
tication server to obtain the invoking user’s identity and prevent replay attacks.

Note that the internal passive server model works similarly, but since servers typ-
ically run with elevated privileges to service multiple users, a setuid wrapper is not
required. Instead, the interposition agent running in the server intercepts the setuid(),
seteuid(), and setreuid() system calls. At this point, before dropping privileges, the ap-
propriate file descriptor is created, after which the same authentication scheme is used.

Remote Authentication Remote authentication ensures that only legitimate users can
access the perimeter controller in order to issue pinhole requests. The actual mechanism
used to enforce this policy between the local and remote authentication servers can take
any form. In the Diaper implementation, a stock SSH server is used with an extremely
restrictive login shell called Mash [19] that does not allow remote delegates to do any-
thing besides issue pinhole requests via a command created for that purpose. Each local
authentication server defines a mapping from each of its local delegates to a remote del-
egate known to the remote authentication server for which it possesses authentication
credentials. These credentials are then used to transmit locally authenticated requests to
the remote authentication server for further processing.
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An undesirable, but unavoidable risk of allowing non-interactive requests to the
perimeter controller is the need for the remote delegate credentials to be unprotected
beyond standard file system discretionary access controls. For instance, an SSH pri-
vate key cannot be encrypted or else the local authentication server cannot use it to
authenticate to the remote authentication server. Thus, a root compromise of a local
authentication server host allows the attacker to issue pinhole requests. To mediate this
risk, authenticated pinhole requests are first checked against a site security policy before
being carried out on the perimeter enforcer.

4.2 Pinhole Authorization

The component responsible for validating authenticated pinhole requests against a site
security policy is called the pinhole authorization server. A site policy is defined by a
set of rules of the form “(allow|deny) <remote delegate> <end user> (tcp|udp) <source
IP address range> <source port range> <destination IP address range> <destination port
range>”. A pinhole is permitted if it allowed by at least one rule in the policy and is not
denied by any rule in the policy. Fairly restrictive policies can be imposed by employing
service or host specific remote delegates. For example, host specific remote delegates
can be used to minimize the damage of local authentication server compromises by
using a remote delegate with the same name as each host “hosti” and a rule “allow
hosti * * * * hosti *”. In this setup, hosts can only open pinholes to themselves, thus a
breach of one host does not affect the security of all the others.

4.3 Pinhole Execution

Once the authorization server determines that a pinhole request is permitted, that request
must actually be carried out on the perimeter enforcer. Since many different requests
may be received around the same time, access to the perimeter enforcer must be strictly
controlled to avoid interference between requests. The required mutual exclusion and
perimeter enforcer interaction is provided by the pinhole execution server. This server
only accepts requests from root-level processes, such as the authorization server. Re-
quests are processed in batches by a single process as will be described in Section 5.1.

Each pinhole request is translated into an ACL update command on the perimeter
enforcer, which varies by the enforcer’s type and vendor. Some products have APIs or
SNMP-based mechanisms for manipulating the running configuration. Those without
such support require scripting of the command-line interface. Diaper currently supports
one software enforcer (Iptables) and four classes of hardware enforcers (Cisco IOS
devices, Force10 FTOS devices, Foundry IronWare OS devices, and Juniper JunOS
devices). Additional enforcer types can be added in a modular fashion.

The pinhole execution server also detects and cleans up stale pinholes, which are
those that are no longer needed by any process, but which are still active on the perime-
ter enforcer. This can occur when a process receives a SIGKILL before it is able to
clean up its own pinholes or after a crash of the pinhole execution server itself. A re-
lated condition is when the ACL state of the perimeter enforcer does not match that of
the pinhole execution server as could potentially occur after a reboot of the perimeter
enforcer or a manual update by an administrator. Both of these cases are handled by
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a periodic status check of the perimeter enforcer’s ACLs. Stale pinholes are detected
using ACL accounting functionality that counts how many packets have matched a
given ACL. A pinhole is considered stale and will be closed if its packet count does
not change between two consecutive status calls. Using this approach, Diaper’s pinhole
state is resilient even across failures and restarts of multiple components.

5 Implementation and Performance

A prototype of Diaper has been fully implemented. The local pinhole authentication
server, pinhole authorization server, and pinhole execution server are written in Perl.
The remote pinhole authentication server is a stock SSH server. The interposition agent
is written in Bypass [33], which is a minimal syntactic wrapper around C/C++ code
that isolates the user from differences in system call interfaces and implementations
between Unix operating systems. Bypass supports layering of multiple agents, thus
using the Diaper agent does not preclude using other agents for other purposes.

Diaper has been fully tested on Linux, but can run on any Unix operating system
with a library preload mechanism. The agent is compiled into a shared library, which
is loaded into applications by setting the appropriate preload environment variable (e.g.
LD_PRELOAD, _RLD_LIST, etc.) before the application is executed. With the excep-
tion of POSIX thread support, all of the intercepted system calls are a core part of the
Standard C Library, which is linked into almost every application on Unix operating
systems, thus Diaper is likely to work correctly with the vast majority of dynamically
linked multiport applications without modification. The same approach can also be used
on Windows systems by utilizing an equivalent mechanism such as Fault Tolerant In-
terposition Agents [3]. The Diaper interposition agent is around 1000 lines of Bypass
C++ code. The setuid wrapper is about 50 lines of C code.

The test network consisted of an internal host, an external host, and a perimeter
controller, each on a 2.4 GHz Pentium 4 Linux box connected by 100 Mb/s Ethernet
through three types of perimeter enforcer: Iptables, a Cisco 6500, and a Force10 E600.
The least privilege policy of Section 1 was applied to each perimeter enforcer. Raw
performance numbers were also gathered for a Foundry MLX-4 and a Juniper MX960.

5.1 Scalability

The main bottleneck in the Diaper architecture is the perimeter enforcer. While the
various Diaper servers can be scaled using standard server load balancing techniques,
the perimeter enforcer is a unique resource that must be involved in every interaction.
The two main scalability measures of a perimeter enforcer are the maximum number of
ACLs that can be in effect at any given time without appreciable performance degrada-
tion and the maximum rate at which ACLs can be updated.

Hardware enforcers typically have no performance degradation regardless of the
number of ACLs in effect due to special Ternary Content Addressable Memory (TCAM)
that can perform simultaneous line-rate lookups across the entire ACL space. TCAM
is expensive, however, thus, depending on the vendor, is usually limited to somewhere
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between thousands and tens of thousands of ACL entries per interface. Software en-
forcers have access to large amounts of cheap memory, thus can theoretically support
very large numbers of ACLs. Since standard memory is not optimized for large scale
parallel lookups, however, performance degrades significantly as more and more ACLs
are applied. Thus, the practical limit for these enforcers is usually between thousands
and tens of thousands of ACLs total.

The other limiting factor is the maximum rate at which ACLs can be updated. Fig-
ures 6 and 7 show the time required to apply ACLs sequentially and in batches using
Iptables, a Cisco 6500, a Force10 E600, a Foundry MLX-4, and a Juniper MX960. As
can be seen, significant performance gains can be achieved by batching ACL updates
together. Figure 8 shows the update rates achieved with different batch sizes when no
ACLs are initially in effect. The optimal batch size is approximately 200 for Iptables,
300 for the Cisco 6500, 1000 for the Force10 E600, 5000 for the Foundry MLX-4, and
4200 for the Juniper MX960, achieving effective rates of 10000, 1220, 445, 1070, and
446 updates per second, respectively. The pinhole execution server processes ACLs in
batches of the optimal size when at least that many requests are queued, thereby max-
imizing the update rate. As shown in Figure 9, the maximum achievable rate can only
be maintained up to a certain number of existing ACLs before factors such as exhaus-
tion of the TCAM or kernel caches are encountered. The update performance of the
Force10 E600 and the Foundry MLX-4 degrades far less dramatically than the others
as the number of ACLs in effect increases. The Juniper MX960 has several orders of
magnitude more ACL capacity than the others, but is hampered by a slow ACL compi-
lation process. The Foundry MLX-4 has the best overall ACL performance with a high
maximum update rate and almost no degradation as existing ACLs increase.
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Fig. 6. Sequential update times Fig. 7. Batch update times

To determine the suitability of Diaper to a particular organization, the ACL char-
acteristics of that organization’s perimeter enforcer must be compared to its expected
network traffic patterns. Namely, the expected average number of concurrent multiport
protocol connections must be less than the ACL capacity of the perimeter enforcer and
the initiation/termination rate of those protocols must be less than the maximum up-
date rate achievable with a number of ACLs in effect equal to the average number of
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connections. To handle bursty traffic where the average number of connections is less
than the ACL capacity of the perimeter enforcer, but the maximum number of connec-
tions is sometimes greater, the pinhole execution server keeps track of ACL usage and
buffers requests until the load returns to normal. If the ACL characteristics of the pri-
mary perimeter enforcer are not adequate for the expected traffic, there are still many
possible deployment options due to the flexibility of the Diaper architecture.
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First, Diaper can be deployed on a per application basis, thus the protocol load may
easily be shared with other approaches. For example, a network login capability can be
used to offload portions of the traffic such as long running MoIP sessions while Diaper
can dynamically control the remaining traffic. Second, Diaper is designed to control
both firewalls as well as core routers and switches with no modifications necessary be-
yond the perimeter. By deploying multiple perimeter controllers each in charge of a
different network device, the natural segmentation of network traffic provided by inter-
nal switches and routers can be used to combine the ACL capacities of multiple devices.
A similar approach can be used with a sequence of perimeter enforcers on the border.
Finally, Diaper is lightweight enough to be deployed on every host in the network that
runs its own software enforcer. In this case, the perimeter enforcer, perimeter controller,
and internal host are all one and the same. The organization perimeter enforcer can stat-
ically allow some subset of traffic to pass through to the end hosts, which themselves
can dynamically control which connections they will and will not allow.

As a sanity check for the scalability results, publicly available packet traces of
FTP connections to Lawrence Berkeley National Laboratory [26] were analyzed to
determine the requirements for a real organization. The traces represent over 22,000
FTP control connections and over 49,000 data connections consisting of more than
3,200,000 packets between 320 unique servers and 5832 unique clients over a 10 day
period. Figure 10 shows the number of open FTP data connections over time, which rep-
resents the maximum number of perimeter enforcer ACLs required at any given time.
Figure 11 shows the ACL updates per second required to open/close the correspond-
ing pinholes. As can be seen, although the traces encompass one of the most prevalent
multiport protocols and a fairly large number of hosts and connections, the ACL usage
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Fig. 10. Open data connections Fig. 11. Required update rate

and update rate requirements are very modest and could easily be handled by any of the
perimeter enforcers tested. Additional study is needed, however, to assess whether such
requirements are typical of all organizations and multiport protocols.

5.2 High Performance File Transfer

Diaper was tested with a variety of high performance file transfer protocols that rep-
resent a wide cross-section of existing multiport protocol behavior including TCP and
UDP control streams, TCP and UDP data streams, encrypted control streams, mul-
tiple data streams, and internal passive/external active server models with multipro-
cess, multiplexed, and multithreaded concurrency. The applications used for testing in-
clude BbFTP [2], BetaFTPD [4], Tsunami [34], UDT [35], Vsftpd (SSL mode) [37],
and Wzdftpd [39]. None of the corresponding protocols besides unencrypted FTP (i.e.
BetaFTPD and Wzdftpd) are supported by existing firewalls due to either their use of
encryption on the control channel or their nonstandard research-oriented nature.

Table 1 shows the overhead in milliseconds introduced by Diaper while transferring
a 100 MB file through three types of perimeter enforcer using each of the applications.
The overhead was measured against the same transfers through statically authorized
ports without the agent wrapper. In these tests, overhead was proportional to the number
of ACL updates divided by the ACL update speed of the given perimeter enforcer plus a
slight overhead of around 15 ms per update. No benefit was gained from batching in the
multiple stream BbFTP case as it binds its auxiliary ports sequentially. Overall, Diaper
operated correctly with a variety of protocols with minimal overhead.

6 Conclusions and Future Work

This paper has described a new approach for enabling least privilege network security
policies based on Dynamic Perimeter Enforcement called Diaper. Diaper observes the
behavior of network services to identify the specific inbound perimeter access that is
required at any given time and dynamically adjusts the ACLs of a perimeter enforcer
to open and close the perimeter accordingly. It supports inbound access for both clients
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and servers and is completely transparent to external users. Internal services must be
invoked slightly differently, but no source code modifications nor changes to user usage
patterns are required. Through the use of the Diaper framework, each site can have the
tightest perimeter policy possible and yet still communicate at the highest bandwidth
with almost any multiport application.

Application Server Model Control Data Concurrency Iptables Cisco 6500 Force10 E600

BbFTP (1 stream) Internal Passive TCP TCP Multiprocess 30.1 61.6 397

BbFTP (2 stream) Internal Passive TCP TCP Multiprocess 68.4 137 755

BbFTP (4 stream) Internal Passive TCP TCP Multiprocess 149 293 1570

BbFTP (8 stream) Internal Passive TCP TCP Multiprocess 400 682 3410

BetaFTPD Internal Passive TCP TCP Multiplexed 29.8 64.1 373

Tsunami External Active TCP UDP Multiprocess 29.9 68.3 406

UDT External Active UDP UDP Multiprocess 29.5 62.9 370

Vsftpd (SSL mode) Internal Passive TCP TCP Multiprocess 29.4 66.9 406

Wzdftpd Internal Passive TCP TCP Multithreaded 30.8 68.9 426

Table 1. Diaper overhead (ms) during 100 MB file transfer

There are a variety of directions for future research. The ACL characteristics of ad-
ditional perimeter enforcers will be evaluated and corresponding support added to the
pinhole execution server. Scalability analysis will be performed on additional multiport
protocols when corresponding packet traces become available. Support for NAT envi-
ronments and a Windows interposition agent will also be investigated. Alternatives to
library preloading will be studied to enable support of static binaries. For deployment in
real-world security settings, mechanisms for redundancy and resiliency must be added
such as automatic fail-over based on factors including the health of the Diaper servers
and the perimeter controller’s connectivity to the perimeter enforcer. Finally, additional
pinhole authorizations can be added including time-based permissions and dynamic
permissions on the pinhole execution server that can, for example, limit the number of
pinholes that any one user can have open at once.
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