
Transparent Optimization of Parallel File System
I/O via Standard System Tool Enhancement

Paul Z. Kolano
NASA Advanced Supercomputing Division, NASA Ames Research Center

M/S 258-6, Moffett Field, CA 94035 U.S.A.
paul.kolano@nasa.gov

Abstract—Standard system tools employed by users on a daily
basis do not take full advantage of parallel file system I/O
bandwidth and do not understand associated idiosyncrasies such
as Lustre striping. This can lead to non-optimal utilization of both
the user’s time and system resources. This paper describes a set
of modifications made to existing tools that increase parallelism
and automatically handle striping. These modifications result
in significant performance gains in a transparent manner with
maximum speedups of 27x, 15x, and 31x for parallelized cp, tar
creation, and tar extraction, respectively.

I. INTRODUCTION

In a typical HPC workflow, users invoke a variety of stan-
dard system tools to transfer data onto the system and prepare
it for processing before analyzing it on large numbers of CPUs
and preparing/retrieving the results. User data is typically
stored on a parallel file system that is capable of serving
large numbers of clients with high aggregate bandwidth. The
standard tools used to manipulate the data, however, are not
typically written with parallel file systems in mind. They either
do not employ enough concurrency to take full advantage
of file system bandwidth and/or leave files in a state that
leads to inefficient processing during later access by parallel
computations. This results in non-optimal utilization of both
the user’s time and system resources.

This paper presents a set of modifications to standard file
manipulation tools that are optimized for parallel file systems.
These tools include highly parallel versions of cp and tar that
achieve significant speedups on several file systems as well
as Lustre-specific versions of bzip2, gzip, rsync, and tar that
have embedded knowledge of Lustre striping to ensure files
are striped appropriately for efficient parallel access. These
tools can be dropped into place over standard versions to
transparently optimize I/O whenever the user would normally
invoke them resulting in greater productivity and resource
utilization. These modifications will be discussed as well as
detailed performance numbers on various parallel file systems.

This paper is organized as follows. Section II discusses
the addition of stripe-awareness into commonly used tools.
Section III describes high performance modifications to the
cp and tar utilities. Section IV details related work. Finally,
section V presents conclusions and future work.

II. STRIPE-AWARE SYSTEM TOOLS

Parallel file systems such as CXFS [20], GPFS [18], and
Lustre [19] utilize parallel striping across large numbers of

disks to achieve higher aggregate performance than is possible
on a single-disk file system. Unlike CXFS and GPFS, however,
Lustre striping must be specified explicitly before a file is
first written. The stripe count determines how many Object
Storage Targets (OSTs) a file will be divided across, which
can significantly impact I/O performance. A greater number
of OSTs provides more available bandwidth but also produces
greater resource contention during metadata operations. Strip-
ing cannot be changed after a file is created without copying
the file in its entirety so should be set carefully.

Figure 1 shows the time to perform the four basic metadata
operations on 10,000 files while varying the stripe count using
an otherwise idle Lustre file system. As can be seen, the impact
of striping can be significant even when file contents are not
being read or written. The greatest impact moving between
1 and 64 stripes was on the stat operation with a slowdown
of 9.8x while the unlink operation was least impacted with
a slowdown of 2.9x. The open and create operations slowed
down by 8.4x and 5.9x, respectively.

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

create
open
stat
unlink

Fig. 1. Run time of Lustre metadata operations on 10k files

To better understand the read/write effects of striping, I/O
performance was measured by running parallel instances of
the dd command on varying numbers of 3.0 GHz dual quad-
core Xeon Harpertown front-ends while reading or writing
disjoint blocks of the same file to /dev/null or from /dev/zero,
respectively, via direct I/O. File sizes ranged from 1 GB to 64
GB with stripe counts varying from 1 to 64. Figures 2, 3, 4,
and 5 show the times to write files of each size and stripe count
on 1, 2, 4, and 8 hosts, respectively, while Figures 6, 7, 8, and
9 show the corresponding read times. As can be seen, write

1

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

times consistently decrease as the stripe count increases for all
file sizes and numbers of hosts with more significant drops as
the number of hosts increases. In the read case, however, read
times only decrease up to a certain number of stripes after
which they increase again, but larger stripe counts become
more effective as the number of hosts increases.

If the stripe count of the directory containing a newly
created file has ben explicitly set, that file will be striped
according to the parent directory settings. Otherwise, it will be
striped according to the default striping policy. As just shown,
however, different file sizes may behave better with different
stripe counts. A high default value causes small files to waste
space on OSTs and generates an undesirable amount of OST
traffic during metadata operations. A low default value results
in significantly reduced parallel performance for large files and
imbalanced OST utilization. Users can also explicitly specify
the stripe count for files and directories. Many users, however,
may not know about striping, may not remember to set it, or
may not know what the appropriate value should be. Directory
striping may be set but the typical mixtures of large and small
files mean that users face the same dilemma as in the default
case. Even when specified correctly, carefully striped files may
revert to the default during manipulation by common system
tools.

Since neither approach is optimal, a new approach was
developed that utilizes stripe handling embedded into common
system tools to stripe files dynamically according to size as
users perform normal activities. This allows the default stripe
count to be kept low for more common small files while larger
files are transparently striped across more OSTs as they are
manipulated. The tools selected for modification were based on
typical HPC workflows in which a user (1) remotely transfers
data to the file system using scp, sftp, rsync, bbftp, gridftp,
etc., (2) prepares data for processing using tar -x, gunzip,
bunzip2, unzip, etc., (3) processes data on compute resources
using arbitrary code, (4) prepares results for remote transfer
using tar -c, gzip, bzip2, zip, etc., and (5) remotely retrieves
results from the file system. The key to the approach is that by
the third step, the input data will have hopefully been striped
appropriately in order for processing to achieve the highest
I/O performance. The fifth step can be ignored as data is being
written to an external file system outside the local organization.
Additional tools occur in other common activities such as
administrators copying data between file systems to balance
utilization using cp, rsync, etc., users copying data between file
systems (e.g. home/backup directory to scratch space) using
cp, rsync, etc., or users retrieving data from archive systems
using scp, sftp, rsync, bbftp, gridftp, etc.

Adding stripe-awareness to existing tools is a straightfor-
ward process. Since striping needs to be specified at file
creation, the first step is to find instances of the open() call
that use the O_CREAT flag and determine if the target file is
on Lustre using statfs(). If so, the projected size of the file
is computed and used to determine the desired stripe count.
Finally, the open() call is switched to the Lustre API equiva-
lent, llapi_file_open(), with the given count. Determining the

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 2. 1-host dd write

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 3. 2-host dd write

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 4. 4-host dd write

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 5. 8-host dd write

2

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 6. 1-host dd read

 0

 100

 200

 300

 400

 500

 600

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 7. 2-host dd read

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 8. 4-host dd read

 0

 50

 100

 150

 200

 250

1 2 4 8 16 32 64

Ti
m

e
(s

)

Stripes

64GB
32GB
16GB

8GB
4GB
2GB
1GB

Fig. 9. 8-host dd read

projected size may involve greater complexity for applications
such as tar where the target size may be the sum of many
individual file sizes.

From the figures, an approximate function for computing
optimal stripe count can be extrapolated by examining the
points of diminishing or negative returns. Based on this limited
data, the optimal write stripe count is projected to be size·hosts

8GB

while the optimal read stripe count is projected to be size·hosts
16GB .

Since the number of hosts that users will run on is unknown,
a value must be chosen to represent anticipated usage (e.g.
from historical job logs). Armed with these formulas, a set
of stripe-aware tools has been implemented to cover the
basic workflow/other activities of archival/extraction via tar,
compression/decompression via bzip2/bunzip2 and gzip/gunip,
local transfer via cp and rsync, and remote transfer via rsync.
This set of tools is known as Retools (Restriping Tools for
Lustre), which will be available as open source shortly [17].

Figures 10, 11, 12, and 13 show the execution times of in-
voking the regular and stripe-aware versions of bzip2/bunzip2,
gzip/gunzip, rsync, and tar, respectively, on single-striped files
of varying size with 1 GB files used for the tar cases. To better
approximate the stripe count desired for the local environment,
the logs of over 900,000 jobs from 2012 were analyzed to
find the average number of nodes used, where nodes roughly
correspond to hosts in the previous formulas. The average
number of nodes was found to be 12 with a time adjusted
average (with nodes scaled by job run time) of 24. Based
on these numbers, striping was chosen to optimize reads at a
projected job size of 16 nodes, which works out to 1 stripe
per GB. The performance for stripe-aware cp and an alternate
version of stripe-aware tar will be given in Section III. As can
be seen, modest performance gains were achieved in 32 of
49 cases due to the benefit of writing to a higher number of
stripes. Only 8 of 17 losses were greater than 5%, all but one
of which were from the bunzip2 case. It is not known why
bunzip2 performs so poorly with increased striping.

Note that any performance gains by these tools are simply
beneficial side effects of the main goal of increasing I/O
performance during resource-intensive parallel jobs. To under-
stand the types of gains that may be achieved during such jobs,
the mpi-tile-io benchmark [16] was used to simulate an I/O
access pattern that may be seen in practice. This benchmark
tests the performance of the file system using noncontiguous
tiled access, which is found in tiled displays and various
numerical applications. Figure 14 shows the results of running
mpi-tile-io on varying numbers of CPUs (8 per node) across
different numbers of stripes with the tile size fixed at 1 GB per
CPU. As can be seen, at higher numbers of CPUs and lower
stripe counts, contention for the underlying OSTs becomes a
significant issue and each CPU is only able to get its data at
a fraction of the possible I/O rate.

The figure also shows the stripe counts predicted to be opti-
mal from the previous dd results and the counts resulting from
the local configuration of 1 stripe per GB. With the exception
of the anomalous 1 CPU, 2 stripe case, the configured value is
an average of 5% away from ideal with a maximum difference

3

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)

bzip2
bzip2 (stripe-aware)
bunzip2
bunzip2 (stripe-aware)

Fig. 10. Stripe-aware bzip2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)

gzip
gzip (stripe-aware)
gunzip
gunzip (stripe-aware)

Fig. 11. Stripe-aware gzip

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)

rsync
rsync (stripe-aware)

Fig. 12. Stripe-aware rsync

 0
 50

 100
 150
 200
 250
 300
 350
 400

 1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)

tar create
tar create (stripe-aware)
tar extract
tar extract (stripe-aware)

Fig. 13. Stripe-aware tar

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 2 4 8 16 32 64

Pe
rfo

rm
an

ce
 (M

B/
s)

Stripes

64 CPUs
32 CPUs
16 CPUs
8 CPUs
4 CPUs
2 CPUs
1 CPU
predicted
configured

Fig. 14. Read performance of mpi-tile-io with a 1 GB tile per CPU

of 13%. The predicted value is an average of 15% away from
ideal with a maximum difference of 32%. It should be noted
that domain experts would likely achieve the highest possible
performance using manual striping as they understand exactly
how the data will be used. For the majority of users that may
not understand all the intricacies of striping, however, the
transparent optimization provided by stripe-aware tools will
likely provide a significant performance boost.

III. HIGH PERFORMANCE SYSTEM TOOLS

Stripe-awareness is a good first step towards transparent
I/O optimization. The default stripe count can be kept low
for more common small files resulting in reductions to OST
contention and wasted space. Large files will automatically use
more stripes as they are manipulated by these tools allowing
user computations to achieve higher performance and OST
utilization to be kept in better balance. The tools themselves,
however, achieve only modest performance gains with I/O
rates still nowhere near the raw speed of the file system.

Several issues prevent standard tools from achieving higher
performance. They typically use a single thread of execution,
which cannot keep single system I/O bandwidth fully utilized.
They rely on the operating system buffer cache, which can be-
come a bottleneck with multiple threads. They use sequential
reads/writes instead of overlapping them. Finally, they operate
on one host, where single system bottlenecks limit maximum
I/O. Adding parallelism is significantly more complex than
adding stripe-awareness. This section describes high speed
variants of cp and tar that have been designed to provide I/O
performance more in line with that of parallel file systems.

Performance was measured on CXFS, GPFS, and Lustre file
systems, each attached to a different compute system. CXFS
tests were run on a shared-memory SGI Altix 4700 consisting
of 1.6 GHz dual-core Itanium 2 Montecito processors with 2
GB memory per core. GPFS tests were run on IBM iDataPlex
nodes consisting of two 2.8 GHz quad-core Xeon Nehalem
processors with 24 GB memory per node connected via DDR
Infiniband. Lustre tests were run on SGI ICE nodes consisting
of two 3.0 GHz quad-core Xeon Harpertown processors with
8 GB memory per node connected via DDR Infiniband.

4

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

CXFS and Lustre tests were run across two different file sys-
tems but only a single GPFS file system was available. GPFS
scaling results were likely decreased due to double resource
consumption. The GPFS instance was a pre-production file
system, however, with no other activity on it. All CXFS and
Lustre instances were in production, but Lustre was measured
at known near-idle periods. The activity on CXFS was at
unknown levels during testing but likely to have been fairly
idle given the level of compute node activity.

A. High Performance Cp

Cp is the primary data movement application on Linux/Unix
operating systems and is often involved in large file operations
such as administrators balancing out file systems or users
copying data between scratch and archive file systems. The
standard single-threaded implementation of cp from GNU
coreutils [5], however, cannot fully utilize parallel file system
bandwidth due to limited concurrency, causing these opera-
tions to take much longer than needed. A high performance
version of cp allows the speed of these operations to be
increased transparently through more effective I/O utilization.

Mcp is a multi-threaded modification of the coreutils cp
command using OpenMP [2] and is available as open source
[14]. Mcp was previously introduced by the author [9] with
results on Lustre but additional results on CXFS and GPFS are
shown here to demonstrate its general applicability to different
parallel file systems. Mcp is stripe-aware so can also be used
as a fast restriping tool as files on Lustre must be copied to
be restriped.

In general, copying regular files is an embarrassingly par-
allel task since files are completely independent from one
another. The processing of the directory hierarchy containing
the files, however, must ensure that a file’s parent directory
exists and is writable when the copy begins and must have its
original permissions and ACLs when the copy completes. Mcp
operates using two types of threads. A single traversal thread
behaves like cp except when a regular file is encountered. In
cp, regular files are copied immediately whereas in mcp, the
traversal thread instead creates a copy task and pushes it onto
a semaphore-protected task queue. It then pops an open queue
to wait for the file to be opened before setting permissions
and ACLs and continuing on to the next file.

The second type of thread is a worker thread with multiple
instances. Each worker pops a task from the task queue, opens
the file, and pushes a notification onto the open queue allowing
the traversal thread to continue. Once the file has been opened,
directory permission and ACL changes made by the traversal
thread can no longer affect the worker’s access to the file. The
worker then performs the copy and pops another task when
complete.

The original cp uses buffered I/O, which can exhibit poor
buffer cache utilization since file data is read once, but never
accessed again. This increases CPU workload by the kernel
and decreases performance of other I/O as it thrashes the
buffer cache. To address this problem, mcp supports both
direct I/O, which allows read and/or writes to skip the buffer

cache entirely, and posix_fadvise(), which informs the kernel
that data can be released after it is read and/or written.

Figure 15 shows the performance of copying 64 1 GB files
on a single node for varying numbers of threads on different
file systems. Direct I/O performance was not gathered on
GPFS as it was significantly worse than the other two schemes
during initial testing. As can be seen, however, direct I/O
on CXFS and Lustre resulted in significant gains with more
than a 7x improvement in both 8-thread cases. GPFS had the
lowest overall performance gain of 16%, but there was less
margin for gain as the original cp performed exceptionally
well at 4x faster than cp on Lustre and 6x faster than cp on
CXFS. Fadvise() provided a small gain/loss on CXFS/GPFS,
respectively, but improved Lustre much more where buffering
saw a negative impact at higher thread counts.

 0

 200

 400

 600

 800

 1000

 1200

 1400

buf fadv dio buf fadv buf fadv dio

Pe
rfo

rm
an

ce
 (M

B/
s)

 CXFS GPFS Lustre

cp
1 thread
2 threads
4 threads
8 threads

Fig. 15. Buffer-managed copy performance

Multi-threading increases overall parallelism, but paral-
lelism within each thread can be increased even more via
double buffering. Using asynchronous I/O, the read of the
next file block can be overlapped with the write of the
previous block. This theoretically reduces the time to process
each block from time(read) + time(write) to max(time(read),
time(write)). Figure 16 shows double buffering results where
direct I/O on Lustre had the greatest gains, improving an
average of 52% up to 10x cp on 8 threads. Direct I/O on CXFS
improved an average of 25% up to 4 threads, but decreased
4% at 8 threads indicating that perhaps I/O limits were being
reached on the compute system. Fadvise() on GPFS improved
an average of 18% up to 1.3x cp on 8 threads, while on CXFS
and Lustre, performance improved slightly up to 4 threads but
decreased at 8 threads 12% and 4%, respectively.

On GPFS and Lustre, tests used a single node of a dis-
tributed memory system, hence subject to that node’s physical
resource limitations. To overcome these limits, mcp supports
multi-node operation where the aggregate resources of multi-
ple nodes can be used to carry out the same transfer. Nodes
are divided into a single manager node that runs the traversal
thread and multiple worker nodes. All nodes run multiple
worker threads along with a communication thread to handle
the distribution of tasks between the traversal thread on the
manager node and worker threads on other nodes via TCP
or MPI. The manager TCP/MPI thread waits for messages

5

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 fadv dio fadv fadv dio

Pe
rfo

rm
an

ce
 (M

B/
s)

 CXFS GPFS Lustre

cp
1 thread
2 threads
4 threads
8 threads

Fig. 16. Double-buffered copy performance

from the worker TCP/MPI threads, after which it pops a task
from the manager task queue and sends it back to the worker
node, who pushes it onto the local task queue. Worker threads
operate as normal by popping tasks off their local queue and
pushing notifications of file opens onto the local open queue,
which are sent back to the manager via the TCP/MPI thread.

Figure 17 shows the results of using multiple nodes for the
same copy. Very significant performance gains are achieved
on Lustre with fadvise() actually overtaking direct I/O on 16
nodes at 27x cp compared to 24x cp for direct I/O. Larger
gains are also seen on GPFS at 3.4x cp on 16 nodes.

With less files than threads or a few large files, threads
can become imbalanced. To evenly distribute workload across
threads/nodes, mcp supports split processing of files so mul-
tiple threads can operate on different portions of the same
file. In this mode, the traversal thread may add multiple tasks
for each file corresponding to different portions of the file at
different offsets that can be processed in parallel.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 fadv fadv dio

Pe
rfo

rm
an

ce
 (M

B/
s)

GPFS Lustre

cp
1 node
2 nodes
4 nodes
8 nodes
16 nodes

Fig. 17. Multi-node copy performance

Figure 18 shows the copy of a single 64 GB file across
multiple threads. The profiles of the CXFS and Lustre single
node cases are very similar with an initial gain followed by
almost no gain as the number of threads increases. On CXFS,
the maximum is similar to the multi-file case, but on Lustre,
there appears to be a bottleneck accessing the same file with
multiple threads on the same node that more than halves multi-

file performance with both direct I/O and fadvise(). If 1 thread
per node is used instead of 1 thread per cpu, however, the
results are significantly different at 19x and 12x cp on 16
nodes/threads for direct I/O and fadvise(), respectively. It is
likely that Lustre locking mechanisms are enforcing sequential
access to the file between threads on the same node as the
maximum achieved in the single file 8-thread cases is almost
identical to that of the 1-thread cases in the multi-file scenario.

GPFS scaled similarly in both the thread per cpu and thread
per node cases up to 3.6x cp on 16 nodes/threads. Note that
the GPFS file system for this particular test was different from
previous tests. The split file test used a production GPFS file
system with an unknown amount of other activity.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 fadv dio fadv fadv fadv dio fadv dio
Pe

rfo
rm

an
ce

 (M
B/

s)

CXFS GPFS Lustre
 (t/cpu) (t/node) (t/cpu) (t/node)

cp
1 thread
2 threads
4 threads
8 threads
16 threads

Fig. 18. Split-file copy performance

B. High Performance Tar

One of the most commonly used tools in basic user work-
flows is tar, which is used to consolidate multiple input/output
files before transfer to/from the system. Tar was originally
intended for inherently sequential tape access, hence is se-
quential by design. Since it is now more commonly used on
standard file systems, however, these design choices leave it
with the same types of inefficiencies that plague cp.

While the tar source code could have been optimized in
the same manner as the cp code was for mcp, the tar code is
quite a bit larger and more complex than cp, which itself took
a significant effort to parallelize. Instead, it was realized that
the sequential nature of tar files allow them to be easily par-
allelized by leveraging existing mcp work. Namely, each file
within a standard tar archive is stored contiguously surrounded
by header and padding blocks. Hence, creations/extractions
can be achieved with partial copies to/from a given offset in
the tar archive from/to a given file.

To support this functionality, mcp was given the ability to
copy any offset and length of the source file to any offset
of the target, and on Lustre, the ability to specify the target
stripe count as a multiple of the length. Additionally, mcp
was given the ability to read a list of the source/target files
to copy from stdin instead of having to specify them on the
command line. Then a Perl version of tar from the Archive::Tar
module was modified such that instead of copying file data
itself, it creates a list of partial copies and feeds them to

6

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

mcp, which is then spawned on as many hosts as specified.
During creation, a (suitably striped) tar skeleton is written with
appropriate headers and padding. In the extraction case, file
locations within the existing archive are determined.

The drawback to this approach is that the resulting program
is not completely drop-in compatible with the original (tar) as
are all the other modifications discussed thus far. Only basic
creation/extraction options and the POSIX ustar format [7]
are supported. Any unsupported options or formats cause the
default tar program to be invoked instead.

Figure 19 shows the results of creating and extracting a
tar file consisting of 64 1 GB files. Note that GPFS and
Lustre used front-end systems with the previous configuration
instead of dedicated PBS nodes. Also, GPFS tests were run
on the shared production file system with unknown activity
mentioned in the mcp split file tests. Lustre achieved creations
at 15x tar and extractions at 31x tar on 8 hosts. CXFS had the
next highest gains with creations at 6.3x tar and extractions at
9.3x tar on 8 cpus. Finally, GPFS achieved creations at 3.2x
tar and extractions at 3.6x tar on 8 hosts.

 0

 500

 1000

 1500

 2000

 2500

 3000

 CXFS GPFS Lustre CXFS GPFS Lustre

Pe
rfo

rm
an

ce
 (M

B/
s)

 Create Extract

tar
1 host
2 hosts
4 hosts
8 hosts

Fig. 19. Multi-host parallel tar performance

IV. RELATED WORK

There are a variety of efforts related to this paper. SGI’s
cxfscp [21] is a multi-threaded copy tool that supports direct
I/O and achieves results similar to mcp on shared-memory
systems, but offers minimal benefit on cluster architectures.
Streaming parallel distributed cp (spdcp) [12] has similar goals
as mcp and achieves very high performance on clustered file
systems using MPI to parallelize transfers of files across many
nodes. Like mcp, spdcp can utilize multiple nodes to transfer a
single file. The spdcp designers made the conscious decision to
develop from scratch, however, instead of using GNU coreutils
as a base, whereas mcp started with coreutils to support all
available cp options and to take advantage of known reliability
characteristics. Mcp can also use a TCP model as well as MPI
to support a larger class of systems.

There are several related multi-threaded programs for the
Windows operating systems. RichCopy [6] supports multi-
threading in addition to the ability to turn off the system
buffer, which is similar to mcp’s direct I/O option. MTCopy
[11] operates in a similar manner as mcp with a single file

traversal thread and multiple worker threads. MTCopy also
has the ability like mcp to split the processing of large files
amongst multiple threads.

Ong et al. [15] describe the parallelization of cp and other
utilities using MPI. Their cp command, however, was designed
to copy one file to many nodes whereas mcp was designed to
allow many nodes to copy parts of the same file. Desai et al.
[1] use a similar strategy to create a parallel rsync utility that
can synchronize files across many nodes at once. HPSS Tar
[4] optimizes tar by allowing archives to be created/extracted
directly to/from HPSS, bypassing local storage. It uses multi-
threading, buffer management, and HPSS network striping
capabilities to significantly increase tar performance. The
pltar utility [13] uses MPI to parallelize archive creation and
extraction and achieves very high performance on Lustre file
systems.

There are several studies of Lustre performance. Simms
et al. [22] measured the sustained local/remote Lustre I/O
performance using varying stripe counts with results focused
on optimizing stripe count for different blocks sizes instead of
for different file sizes. Fahey et al. [3] investigate basic Lustre
I/O performance characteristics and find minimal benefit to
having more stripes than writers, which supports optimum
stripe counts based on number of hosts. Yu et al. [23]
investigate stripe size performance and stripe count metadata
cost, confirming the high metadata overhead of small files with
large stripe counts. Finally, Laros et al. [10] examine Lustre
performance and observe drops during single file I/O when
compared to multi-file I/O as was observed earlier.

V. CONCLUSIONS AND FUTURE WORK

This paper has described modifications made to standard
system tools commonly found in user workflows to better
support parallel file systems. Various tools were enhanced with
knowledge of Lustre striping to improve parallel I/O perfor-
mance in computational jobs as well as reducing contention,
wasted space, and imbalances on OSTs. The cp and tar tools
were further modified with greatly enhanced parallelism for
significant performance gains on several parallel file systems.
By deploying these tools in place of their standard counter-
parts, users will transparently achieve better I/O utilization and
increased performance by simply using tools as normal.

Figure 20 shows a summarized view of the times a typi-
cal workflow might take before the availability of the tools
described in this paper and after, where data of a given size
is transferred in, extracted with tar, and run through some
parallel application on an appropriate number of CPUs (only
the I/O portion shown), with the resulting output data (assumed
to be the same size as the input for simplicity) tarred up
and transferred back to the origin. As can be seen in the
middle part of the figure, although the optimizations reduce
execution time considerably, remote transfer time can still end
up dominating the workflow as network speeds are typically
much slower than disk speeds. In other work by the author,
a tool called Shift [8] was introduced that can automatically
parallelize remote transfers as well. The right side of the figure

7

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Ti
m

e
(s

)

Size (GB)
 Before After After w/ Shift

xfer in
tar -x

app i/o
tar -c

xfer out

Fig. 20. Summary of performance gains

shows a fully optimized workflow with transfer times taking
advantage of Shift’s greatly enhanced performance. As can
be seen, when taken together, these tools allow workflows to
operate at much higher throughputs than default tools provide,
thereby increasing the resource utilization of both users and
systems with no extra effort on the users’ part.

There are a variety of directions for future research. Other
standard tools should be made stripe-aware including zip, pigz,
and pbzip2 for archival/compression and scp, sftp, bbftp, and
gridftp for file transfer. Additional tools should be investigated
to see which can be parallelized and which would benefit the
most. Finally, other I/O access patterns should be studied to
further validate the benefits of automatic striping.

VI. ACKNOWLEDGMENTS

This work is supported by the NASA Advanced Super-
computing Division under Task Number ARC-013 (Contract
NNA07CA29C) with Computer Sciences Corporation.

REFERENCES

[1] N. Desai, R. Bradshaw, A. Lusk, E. Lusk: MPI Cluster System Software.
11th European PVM/MPI Users’ Group Meeting, Sept. 2004.

[2] L. Dagum, R. Menon: OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Computational Science and Engineering,
vol. 5, no. 1, Jan.-Mar. 1998.

[3] M. Fahey, J. Larkin, J. Adams: I/O Performance on a Massively Parallel
Cray XT3/XT4. 22nd IEEE Intl. Parallel and Distributed Processing
Symp., Apr. 2008.

[4] Gleicher Enterprises: HPSS Tar Man Page. http://www.mgleicher.us/
GEL/htar/htar_man_page.html.

[5] GNU Core Utilities. http://www.gnu.org/software/coreutils/manual/
coreutils.html.

[6] J. Hoffman: Utility Spotlight: RichCopy. TechNet Magazine, Apr. 2009.
[7] IEEE Computer Society: Standard for Information Technology - Portable

Operating System Interface (POSIX) Base Specifications, Issue 7. IEEE
Standard 1003.1-2008, Dec. 2008.

[8] P.Z. Kolano: High Performance Reliable File Transfers Using Automatic
Many-to-Many Parallelization. 5th Wkshp. on Resiliency in High Per-
formance Computing, Aug. 2012.

[9] P.Z. Kolano, R.B. Ciotti: High Performance Multi-Node File Copies and
Checksums for Clustered File Systems. 24th USENIX Large Installation
System Administration Conf., Nov. 2010.

[10] J.H. Laros, L. Ward, R. Klundt, S. Kelly, J.L. Tomkins, B.R. Kellogg:
Red Storm IO Performance Analysis. 9th IEEE Intl. Conf. on Cluster
Computing, Sept. 2007.

[11] Y.S. Li: MTCopy: A Multi-threaded Single/Multi File Copying Tool.
CodeProject article, May 2008. http://www.codeproject.com/KB/files/
Lys_MTCopy.aspx.

[12] K. Matney, S. Canon, S. Oral: A First Look at Scalable I/O in
Linux Commands. 9th LCI Intl. Conf. on High-Performance Clustered
Computing, Apr. 2008.

[13] K.D. Matney, G. Shipman: Parallelism in System Tools. 52nd Cray User
Group Conf., May 2010.

[14] Multi-Threaded Multi-Node Utilities. http://mutil.sourceforge.net.
[15] E. Ong, E. Lusk, W. Gropp: Scalable Unix Commands for Parallel Pro-

cessors: A High-Performance Implementation. 8th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Sept. 2001.

[16] Parallel I/O Benchmarking Consortium. http://www.mcs.anl.gov/
research/projects/pio-benchmark.

[17] Restriping Tools for Lustre. http://retools.sourceforge.net.
[18] F. Schmuck, R. Haskin: GPFS: A Shared-Disk File System for Large

Computing Clusters. 1st USENIX Conf. on File and Storage Technolo-
gies, Jan. 2002.

[19] P. Schwan: Lustre: Building a File System for 1,000-node Clusters. 2003
Linux Symp., Jul. 2003.

[20] L. Shepard, E. Eppe: SGI InfiniteStorage Shared Filesystem CXFS: A
High-Performance, Multi-OS Filesystem from SGI. Silicon Graphics,
Inc. white paper, 2004.

[21] Silicon Graphics Intl.: Cxfscp Man Page. http://techpubs.sgi.com/
library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=man&fname=/usr/share/
catman/a_man/cat1m/cxfscp.z.

[22] S.C. Simms, G.G. Pike, D. Balog: Wide Area Filesystem Performance
using Lustre on the TeraGrid. 2nd TeraGrid Conf., Jun. 2007.

[23] W. Yu, J.S. Vetter, H.S. Oral: Performance Characterization and Opti-
mization of Parallel I/O on the Cray XT. 22nd IEEE Intl. Parallel and
Distributed Processing Symp., Apr. 2008.

8

Proc. of the 2nd Intl. Wkshp. on High Performance Data Intensive Computing, Boston, MA, May 24, 2013

