Automatically Encapsulating HPC Best Practices
Into Data Transfers’

Paul Z. Kolano
NASA Advanced Supercomputing Division, NASA Ames Research Center
M/S 258-6, Moffett Field, CA 94035 U.S.A.
paul.kolano@nasa.gov

ABSTRACT

This paper presents the Shift automated transfer tool and
the mechanisms it employs to achieve better performance
while preserving the stability of HPC environments. Shift
encapsulates best practices understood by domain experts
during transfers so that scientists can focus on their science
without the need to study file transports, resource man-
agement, and file systems as well. Shift understands how
to utilize the variety of transports that might be deployed
throughout a widely distributed user base, how to maximize
the performance achievable by each, and the scenarios in
which each is most effective. Shift understands which re-
sources are available in a particular HPC environment and
how to utilize them for significant performance increases
while preventing resource exhaustion. Finally, Shift under-
stands the file systems to which and from which files may
be transferred and the nuances to their use that affect per-
formance and stability behind the scenes.

Categories and Subject Descriptors

C.2.2 [Network Protocols|: Applications; D.4.3 [File Sys-
tems Management]: File organization; D.4.4 [Commun-
ications Management|: Network communication; H.3.4
[Systems and Software]: Performance evaluation

General Terms
Performance; Reliability; Measurement

Keywords
high performance computing; data transfer; data archival;
best practices; parallelization

1. INTRODUCTION

In an ideal world, HPC users would have unlimited, auto-
matically backed up storage for their data sets with unlim-
ited computational power at their disposal so they would

*Supported by Task ARC-013 (Contract NNA07CA29C)
with Computer Sciences Corporation

© 2015 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate of
the United States Government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

HUST2015, November 15-20, 2015, Austin, TX, USA
(© 2015 ACM. ISBN 978-1-4503-4000-7/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2834996.2834997

never need to move them. In the real world, however, users
are given a finite allocation of scratch space that is not
backed up and a finite allocation of CPU time. Hence, users
must transfer data to/from archive systems to make room for
new data or to backup/restore old data, and must transfer
from/to remote systems for less costly pre-/post-processing.

Users accept that data transfers are a part of life in HPC
environments, but their requirements of data integrity, ease
of use, and turnaround time may often be at odds with each
other and with the requirements of system owners and ad-
ministrators, such as environment stability and cost. For
instance, the transfer tool that is easiest to use or that pro-
vides the most assurance of data integrity may not neces-
sarily be the one the provides the fastest turnaround time.
A file structure that may be easier for a user to manipulate
while archived may degrade the performance of the tape sys-
tem and require more online disk storage to accommodate
the reduced speed. Achieving the best turnaround time pos-
sible for one user may have a negative impact on stability
for all other users. Resolving these and other similar con-
flicts in a manner acceptable to all requires expert knowledge
in how and when to use transfer tools most effectively, the
properties of the local environment and its resources, and
the peculiarities of individual file systems.

A variety of tools exist for providing reliable and/or high
performance file transfer capabilities, but most of them do
not fully address such conflicts so do not perform optimally
in all transfer scenarios. This paper presents a number of
transfer-related considerations and the accepted best prac-
tices for addressing them together with how they are encap-
sulated within Shift, which is a framework for Self-Healing
Independent File Transfers. By embedding these best prac-
tices within Shift, users get the performance and integrity
achievable by domain experts in an easy to use interface that
is drop-in compatible with c¢p/scp while preserving the sta-
bility of the environment for other users and administrators.

Shift consists of a lightweight command-line client that in-
teracts with and performs actions as directed by a man-
ager component. The manager is a command-line appli-
cation that is invoked by the client either directly or via
SSH, and that facilitates centralized tracking of various file
operations such as traversing and creating directories, copy-
ing files, changing attributes, and computing and verifying
checksums. After the client initializes the basic attributes of
the transfer, it enters a loop of requesting operations from

Shift id is 36

> shiftc --status

> shiftc --create-tar /nobackup/userl/datasetl archivel:datasetl.tar

Detaching process (use --status option to monitor progress)

id | state | dirs | files | file size | date | run | rate
| | sums | attrs | sum size | time | left |

34 | error | 0/0 | 23121/23121 | 39.5TB/39.5TB | 10/02 | 2d14h32m5s | 175MB/s
| | 46222/46242 | 23111/23121 | 79TB/79TB | 10:26 | |

35 | done | 1/1 | 5131/5131 | 303GB/303GB | 10/05 | 1m35s | 3.19GB/s
| | 10262/10262 | 5132/5132 | 605GB/605GB | 12:28 | |

36 | run | 24/24 | 26656/26656 | 1.78TB/1.78TB | 10/06 | 2h48m37s | 176MB/s
| | 15463/53312 | 10/26684 | 1.02TB/3.56TB | 12:11 | 1h47m55s |

Figure 1: Shift transfers are initialized using cp/scp syntax and run in the background with on-demand status.

the manager, attempting those operations, and reporting the
results back to the manager. Clients may utilize different
underlying built-in and/or external transport applications
to carry out file operations depending on availability, per-
formance, and underlying system characteristics. By sup-
porting multiple transport applications, each with different
advantages and disadvantages, Shift is able to provide better
performance than any of these transports individually while
augmenting them with advanced capabilities and low-level
optimizations that most do not support on their own.

Shift provides high performance and resilience for local and
remote transfers through a variety of techniques including
end-to-end integrity via cryptographic hashes, throttling of
transfers to prevent resource exhaustion, balancing transfers
across resources based on load and availability, and paral-
lelization of transfers across multiple source and destination
hosts for increased redundancy and performance. The de-
tails of Shift’s basic operation have been described in pre-
vious work [9]. Shift has been in production at the NASA
Advanced Supercomputing (NAS) facility for three and a
half years and in the past year alone has facilitated transfers
of over 14PB of data including approximately 8PB in local
transfers, 4PB in local area network (LAN) transfers, and
2PB in wide area network (WAN) transfers. Shift is used
for everything from user data transfers, to disaster recovery
backups to/from remote organizations, to rebalancing entire
multi-PB Lustre file systems.

Figure 1 shows the main components of Shift’s user interface.
Transfers are initialized using easily understood cp/scp syn-
tax with similar basic options together with Shift-specific op-
tions to access its extended capabilities. In this case, Shift is
being directed to create a tar file named “datasetl.tar” in the
user’s home directory on the remote system “archivel” con-
taining the contents of the local directory “/nobackup/userl/
dataset1”. Unlike cp/scp, which remain in the foreground
until the transfer completes, Shift, by default, backgrounds
itself immediately after printing a transfer identifier, which
may be used to stop, restart, or show detailed status of the
transfer. The main window into Shift’s operation is through
the --status option, which shows all of the user’s transfers
in a given time period. Displayed items include the transfer
state, the number of operations completed, the number of
operations total, the start and run time, the estimated time
remaining, and the transfer rate.

This paper is organized as follows. Section 2 presents related
work. Section 3 describes the tuning of individual transports
and the conditions under which each is most effective. Sec-
tion 4 discusses Shift’s resource management for parallelizing
transfers while avoiding resource exhaustion. Section 5 de-
tails optimizations related to specific file systems. Finally,
Section 6 presents conclusions and future work.

2. RELATED WORK

The cp and scp utilities are the de facto standards for local
and remote file transfer, respectively. A number of other
file transports exist, however, that provide greater perfor-
mance and/or reliability. Rsync [24] supports both local
and remote transfers and can synchronize files that exist at
both the source and destination using partial transfers. This
increases performance by minimizing data transfer and im-
proves reliability by correcting corruption. Parsync [20] is a
wrapper around rsync that utilizes parallel rsync instances
to improve performance and an external utility for faster
directory traversal during transfer initialization.

BbFTP [3] is a remote transfer utility that supports multi-
ple TCP streams and configurable buffer/window sizes for
improved performance as well as a simple retry mechanism
for improved reliability. GridFTP [1] offers many of the
features of BbFTP and Rsync with a more configurable
retry mechanism and additional performance enhancements
including UDP-based data streams, partial transfers, and
striped transfers across multiple servers. Bbcp [8] is a re-
mote transfer tool that offers other optimizations such as
compression and direct I/O as well as a checksum capability
for enhanced data integrity. Fast Data Transfer (FDT) [6]
is a remote transfer tool that utilizes multi-threading and
multiple TCP streams together with checksum and restart
capabilities for greater reliability and integrity.

Mcp [11] is a high performance local copy utility that sup-
ports multi-threaded single and multi-file copies, processing
across multiple nodes, double buffering, and integrated par-
allel hashing. Streaming parallel distributed cp (spdcp) [16]
has similar goals as mcp and achieves very high performance
on clustered file systems using MPI to parallelize transfers
of files across many nodes. Dcp [5] utilizes MPI to distribute
local copies across many nodes without any centralized state
and with integrity verification via checksums. Pcp [21] can
also parallelize local copies using MPI, but in addition to
integrity verification, it provides the abilities to split the

processing of large single files, stripe files automatically on
Lustre file systems, and restart interrupted transfers.

Ong et al. [18] describe the parallelization of cp and other
utilities using MPI. Their cp command, however, was de-
signed to copy one file to many nodes unlike mcp, spdcp, and
pcp, which were designed to allow many nodes to copy parts
of the same file. Desai et al. [4] use a similar strategy to cre-
ate a parallel rsync utility that can synchronize files across
many nodes at once. HPSS Tar [7] optimizes tar by allow-
ing archives to be created/extracted directly to/from HPSS,
bypassing local storage. It uses multi-threading, buffer man-
agement, and HPSS network striping capabilities to sig-
nificantly increase tar performance. The pltar utility [17]
uses MPI to parallelize archive creation and extraction and
achieves very high performance on Lustre file systems.

Several projects modify existing transports to provide en-
hanced performance through better optimization of TCP
window sizes. Thulasidasan et al. [27] modify GridFTP to
dynamically adjust the TCP window and buffer sizes based
on latency values embedded within data packets. This tech-
nique improves performance at a fraction of the memory
usage of static values. Prasad et al. [22] modify GridFTP
to differentiate between congested and non-congested net-
work paths based on out-of-band UDP packets so TCP send
and receive windows can be adjusted optimally. Yildirim
et al. [28] additionally take parallel streams into account
and attempt to balance the TCP window size and number
of streams. HPN-SSH [23] is a performance enhancement
to OpenSSH that achieves dramatic performance improve-
ments using dynamically adjusted SSH receive windows and
a multi-threaded implementation of the AES-CTR cipher.
While HPN-SSH requires client and server modification to
realize peak performance, either side may be modified with-
out affecting compatibility with stock SSH installations.

Other projects (including Shift) utilize existing transports
as building blocks with which to build enhanced capabili-
ties. The Reliable File Transfer (RFT) service of the Globus
Toolkit [15] adds reliability using third-party GridFTP trans-
fers initiated from a centralized server. The gLite File Trans-
fer Service (FTS) [13] is a reliable transfer service that can
be layered on top of GridFTP, RFT, and other services.
FTS monitors all file operations, which are carried out using
third-party transfers based on lower-level services. Globus
Online [2] provides a similar service as RFT and FTS us-
ing centralized tracking and third-party GridFTP transfers
with an easy to understand web interface. While all three
projects improve the usability and resiliency of transfers,
the use of third-party transfers will not fit into the secu-
rity models of many organizations. Stork [12] is a reliable
data placement framework that provides features similar to
Shift including support for local transfers, automatic selec-
tion between multiple transports, and end-to-end integrity.
Stork requires a long-running server accessible with GSI au-
thentication, however, so deployment by individuals is not
practical and may be difficult even for organizations.

3. TRANSPORT TUNING AND SELECTION

The average scientist typically has several transport choices
available on the systems they utilize, but may not under-
stand how to use all of them, how to get the best perfor-

mance out of each, the different scenarios under which each
is most effective, or what idiosyncrasies each may have that
could come into play during their transfers. Shift encap-
sulates all of this knowledge in a single tool that presents
a simple, well-understood cp/scp-style interface while au-
tomatically optimizing and selecting the most appropriate
transport to achieve the lowest turnaround time for the user.

Shift supports a number of the transports discussed in Sec-
tion 2. In particular, Shift incorporates the external tools
bbecp, bbftp, gridftp, mcp, and rsync, has built-in perl
equivalents of cp and sftp (denoted in figures as cp-perl
and sftp-perl) based on the perl File::Copy and Net::SFTP::
Foreign modules, respectively, and a built-in custom perl
variant of the fish protocol [14]. Other potential trans-
ports discussed in Section 2 are not supported because they
are either not currently available or do not have the abil-
ity to transfer two files to two different directories in the
same invocation, which is necessary to efficiently implement
Shift’s batching of arbitrary files. The batching capability is
especially important for remote transfers to avoid incurring
authentication overhead on every file.

Unless otherwise indicated, all local and LAN performance
tests were run between Lustre file systems mounted on ded-
icated 2x12-core 2.5 GHz Intel Xeon Haswell nodes with
128 GB DDR4 memory connected via dual Infiniband 4x
FDR channel adapters. WAN tests were run from a GPFS
file system mounted on shared 2x6-core 2.8 GHz Intel Xeon
Westmere front-ends with 192 GB DDR3 memory over a
10GE WAN link to a Lustre file system mounted on shared
4x8-core 2.6 GHz Intel Xeon Sandy Bridge front-ends with
64 GB DDR3 memory. Note that WAN measurements were
gathered on a production link with an unknown and vary-
ing level of other activity so may not represent the absolute
maximum performance achievable by each transport.

3.1 TCP Window Size

The non-SSH remote transports supported by Shift (bbcp,
bbftp, and gridftp) initiate direct TCP links between source
and destination. All three of these transports expose options
in the underlying TCP layer that can have a significant im-
pact on performance. In particular, the two settings that
impact performance the most are the TCP window size and
the number of parallel TCP streams. The TCP window size
specifies the amount of data the sender /receiver is willing to
buffer before it must wait for an acknowledgment. To max-
imize the performance of a single TCP stream, generally
accepted wisdom states that the window size should be set
to the bandwidth delay product (BDP) (e.g. [27]), which
is the link’s bandwidth multiplied by the round-trip time
between hosts. Each transport has its own default value,
which is further constrained by the operating system settings
(e.g. in Linux, the sysctl net.core. [wrlmem_max values,
which specify the maximum send/receive buffer sizes, and
the sysctl net.ipv4.tcp_[wrlmem values, which specify the
min/default/max settings for TCP window auto-tuning).

Figures 2a and 2b show the performance of transferring a
64GB file over the LAN and WAN, respectively, using the
bbep, bbftp, and gridftp transports with 4 streams over
default and varying window sizes. The bandwidth of the
LAN connection is approximately 40 Gb/s using IPoIB with

600 +
sop” 7
400 |
300 |

200 -

LAN Transfer Performance (MB/s)

100 -

0 . . .
Default 1 4 16 64 100
TCP Window Size (MB)

(a) LAN TCP window performance

800

——— bbcp kgel)
700 | -~~~ bbftp (get)
rrrrrr gridftp (put)

600 -
500
400
300 -

200 |

WAN Transfer Performance (MB/s)

100 +

0
Default 1 4 16 64 100
TCP Window Size (MB)

(b) WAN TCP window performance

Figure 2: Adjusting the TCP window used on the WAN can significantly increase performance over transport defaults.

3500

bbep]
bbftp - - - -
gridtp -~

600 [>u

00 RS L

400
300 T]

200

LAN Transfer Performance (MB/s)
WAN Transfer Performance (MB/s)

100

— Haswell (12-core, 4x FDR) |
- --- lvy Bridge (10-core, 4x FDR)

3000 - . Sandy Bridge (8-core, 4x FDR)

‘Westmere (6-core, 4x QDR)

2500
2000
1500 -

1000 -

Local Copy Performance (MB/s)

bhep (get)
bbftp (get) ----]

__ griditp (put) -----

0 L L 0
1 2 4 8 1 2

TCP Streams

(a) LAN TCP stream performance

4 8 1 2 4 8 16 32 64

TCP Streams Mcp Threads

(b) WAN TCP stream performance

(¢) Mcp multi-threading performance

Figure 3: Internal transport parallelization increases performance by more greedily consuming resources.

a round-trip latency of 0.035ms for a BDP of 175kB. The
bandwidth of the WAN connection is 10 Gb/s with a round-
trip latency of 66ms for a BDP of 83MB. As can be seen,
adjusting the window size on the LAN has minimal impact
as even the default window sizes are greater than the LAN
BDP. On the WAN side, however, adjusting the window
size has a significant impact over the default value. An in-
crease of almost 37x was observed for bbftp due to extremely
poor performance with its default setting. Both bbcp and
gridftp performed much better with default values, but still
saw significant increases of 1.6x and 1.7x, respectively.

Shift utilizes this knowledge of TCP behavior to try to set
the window size automatically for the user, which is abso-
lutely essential in the case of bbftp. While determining the
latency to the destination is easily achieved using the stan-
dard ping tool, determining a site’s bandwidth automatically
a priori is non-trivial and even determining the speed of the
network interface card (NIC) is difficult as a non-root user.
Since the amount of information available is limited, Shift
uses a heuristic-based approach to classify systems into ei-
ther a default case or a 10GE WAN case, the idea being
that while 1GE NICs are readily available for even residen-
tial users who have lower bandwidth, 10GE NICs are still
costly enough to be limited to sites that have the bandwidth
to utilize them effectively. For the default case, a static
window of 4MB is used, which lies in the middle of being
somewhat oversubscribed for LANs and residential WANSs
or somewhat undersubscribed for longer haul 1GE WANs.
For WAN transfers, if a host is determined to have a 10GE
NIC using the lspci utility, the latency to the destination
will be measured and the window will be chosen as if the link

had 10 Gb/s bandwidth up to the OS sysctl limits. While
unlikely to pick the precise ideal window size, the computed
window size should generally be on the correct order to pro-
vide better than default performance in most cases without
the more complex calculations of other work [22, 27, 28].

3.2 Transport Parallelism

Four of Shift’s supported transports (bbcp, bbftp, gridftp,
and mcp) have configurable parallelism that allow additional
resources to be brought to bear when sequential operation
is not utilizing available resources completely. In the case
of bbcp, bbftp, and gridftp, parallelism takes the form of
using multiple TCP streams. Using multiple streams can
have several benefits. First, it allows increased performance
on hosts whose operating systems do not have properly con-
figured TCP window maximums and/or TCP auto-tuning
values. While each stream may run at less than maximum
throughput, combining multiple streams together may still
allow the transfer to utilize all available bandwidth. Simi-
larly, it can overcome undersubscribed default or specified
TCP window sizes in the transports themselves. This is es-
pecially relevant to Shift, which may estimate window size
incorrectly. Finally, multiple streams may help overcome in-
terference by cross traffic on links by more greedily trying
to consume bandwidth.

Figures 3a and 3b show the performance of transferring a
64GB file over the LAN/WAN; respectively, using the bbcp,
bbftp, and gridftp transports with a 4MB/64MB window
size and varying numbers of streams. As can be seen, in the
LAN case, using parallel streams has a detrimental effect on
transfers, with a particularly high impact on bbftp, as there

250

200 -

150 +

100

o

(fish with umac-64 MAC)
a

S

T

LAN Transfer Performance (MB/s)

o

HH []
%, %,
%,

. % % % U Y 9 o %

T T GGG Ve, o, B
% D T e % % o %, [’fe& 55 (9‘9 ')ee \(’60
% % % B % % P % Ty, T, 0

SSH Cipher

(a) SSH cipher performance

250

200 -
150 -

0 H
4 %,

100

1S}

5

=3

LAN Transfer Performance (MB/s)
(fish with arcfour256 cipher)

% T % % % D
0)'90 0290 /5‘70 /bso /bQo 0)90 0)'90 /b@oé\ /bso
o, R B g g % %, R
G e, P, Ry R Ry R %%
% %, % % %
) 5 °

SSH MAC Algorithm

(b) SSH MAC algorithm performance

Figure 4: The default SSH cipher and MAC algorithm settings may not always be optimal for performance.

is less cross traffic to interfere with the transfer so additional
streams simply add more overhead. In the WAN case, trans-
fers fared better overall at 4 streams although even with a
single stream, periods were observed where the full 10 Gb/s
bandwidth was being consumed. So while a single stream is
enough to achieve maximum performance on an idle WAN
link, the additional streams likely helped overcome interfer-
ence by other activity on the network. Shift encapsulates
these results and selects one stream during LAN transfers
and four streams during WAN transfers.

In the case of mcp, parallelism takes the form of using multi-
ple threads. Figure 3c shows the performance of transferring
64 1GB files using mcp with a varying number of threads
across different node types. As can be seen, maximum per-
formance can be increased about 4x on Westmere nodes and
above 6x on the others compared to a single thread. While
performance per thread decreases as more threads are added,
total performance increases up to the point at which the sys-
tem is saturated and the overhead from more threads ends
up decreasing performance. Like other transport parame-
ters, Shift allows the number of threads to be centrally con-
figured on the manager. Within the NAS environment, mcp
is configured with 4 threads as higher thread counts were
thought to overwhelm some front-end systems when multi-
ple users were running local transfers simultaneously, or the
same user kicked off multiple transfers or multi-client trans-
fers on the same host. An alternative to limiting parallelism
at the transport level is Shift’s global throttling mechanism,
which will be discussed in Section 4.2.

3.3 SSH Cipher and MAC Algorithm

Three of Shift’s supported remote transports (the built-in
fish protocol, rsync, and the built-in sftp-perl proto-
col) utilize an SSH pipe as their underlying communication
medium, so their performance is directly proportional to
SSH performance. While SSH does not have configurable
TCP windows or parallelism settings, users can install the
HPN-SSH [23] patches, which improve TCP window han-
dling and increase cipher parallelism. Regardless of whether
these patches are installed or not, however, the performance
achievable by SSH depends greatly on the underlying choice
of cipher and message authentication code (MAC) algorithm.
By default, the client and server will agree on a cipher and
MAC algorithm based on their preferred/supported lists in
the ssh_config and sshd_config files, respectively. If a

user does not specify them explicitly, they may be left with
selections that are non-optimal for performance.

Figures 4a and 4b show the performance of transferring a
16GB file over the LAN with the fish transport while vary-
ing the SSH cipher and MAC algorithm (note that OpenSSH
7.1 was used to characterize current ciphers and MAC algo-
rithms instead of OpenSSH 5.8, which was used for all other
tests). As can be seen, there are significant differences in
performance. The arcfour cipher variants achieve over 63%
greater performance than the next fastest cipher (aes128-
cbc) while the umac-64 MAC algorithm achieves over 18%
greater performance than the next fastest MAC algorithm
(hmac-shal). While the arcfour variants are being phased
out due to security concerns, they can still be used when
the confidentiality of the data is not critical or in more
secure environments such as in LAN transfers. Also note
that these options still offer more privacy than the default
modes of the non-SSH transports, which have completely
unencrypted data streams. Shift allows the preferred order
of ciphers and MACs to be centrally configured in the man-
ager and the Shift client will automatically check which are
available on the client host before transfers begin.

3.4 Transport Selection

While the performance of each individual transport has been
optimized, it must still be determined if there are scenarios
in which some transports perform better than others. Fig-
ures 5a, 5b, and 5c show the performance of the transports
supported by Shift on single files of various sizes transferred
locally, over the LAN, and over the WAN; respectively. Note
that these figures use a logarithmic scale to show differences
at low file sizes more clearly. In the LAN and WAN cases,
there are clear break-even points at which the SSH-based
transports switch from having greater performance to less
performance than the non-SSH transports. For LAN trans-
fers, this point is 256 MB, while for the WAN, it is approxi-
mately 64MB. This is the point at which the overhead of cre-
ating multiple processes and establishing multiple streams
catches up to the lower overhead but slower performance of
the SSH-based transports. Surprisingly, the network-based
transports perform quite well locally with bbcp surpassing
even mcp at 4GB and 16GB. In the local case, there is a clear
break-even point for bbcp at 1GB. Rsync does not perform
as well locally due to checksumming that cannot be paral-
lelized between source and target as in the remote case.

1000 1000

1000

100

-
S
S

—— gridftp
mep
- - rsync

Local Transfer Performance (MB/s)
=
5

LAN Transfer Performance (MB/s)
n
5

01

.
]
3

SSH/Non-SSH Break-Even Point

-

SSH/Non-SSH Break-Even Point

WAN Transfer Performance (MB/s)
.
5

256 1024
File Size (MB)

1 I3 16 64

(a) Local transport performance

4096 16384 65536 1 4 16 64

(b) LAN transport performance

256 1024 4096 16384 65536

File Size (MB)

256 1024 4096 16384 65536 1 4 16 64

File Size (MB)

(¢) WAN transport performance

Figure 5: Transport speed varies by file size with SSH-based transports outperforming non-SSH transports at small file sizes.

3000

‘LOCB| j j j j -
XRX LAN
256525 WAN

2500 -
2000 -
1500 +

1000 +

64 x 1GB Performance (MB/s)

500 -

L[k [

bbftp cp/sftp-perl fish gridftp

(K |

rsync

%
bbcp

mcp

Transport

(a) Large file batch performance (64 x 1GB)

— Local
[OS2 LAN
| sz WAN

o ’%ﬁ&;

bbcp bbftp cp/sftp-perl fish

1000 x 4MB Performance (MB/s)

%

gridftp

mep rsync

Transport

(b) Small file batch performance (1000 x 4MB)

Figure 6: Relative performance between transports may change when transferring multiple files due to per file startup overhead.

While single file performance gives a good indication of the
raw speed of each transport, it does not fully characterize the
overhead when transferring multiple files and performance
can be skewed by file system limitations. Figures 6a and 6b
show the local, LAN, and WAN performance of each trans-
port when transferring 64GB in a batch of 64 1GB files and
4GB in a batch of 1000 4MB files, respectively. As can be
seen, mcp fares significantly better than the others in these
tests since its performance is no longer inhibited by the sin-
gle file write limitations of Lustre. In the small batch WAN
case, all of the non-SSH transports have poor performance
with small files. Bbftp in particular has extremely bad per-
formance with small files over all mediums, likely due to its
use of new sockets for every single file. Shift uses the break-
even points and batch data to automatically select the most
effective transport based on availability on the client and the
average size of each batch being transferred. By dynamically
choosing the transport that is most efficient for each batch
of files, Shift can achieve higher performance than individual
transports can achieve on their own.

4. GLOBAL RESOURCE MANAGEMENT

While optimizing individual transports has significant ben-
efits on dedicated resources, in a production environment,
transfers are typically running on resources that are shared
among all users for transfer as well as non-transfer activity
so there is a high probability of interference with other pro-
cesses. In HPC environments, while resources are shared,
there is also likely to be significant spare capacity at vari-
ous times, which provides an opportunity to increase perfor-
mance dramatically. Shift provides the ability to both take
advantage of excess capacity as well as limiting interference.

4.1 Parallelization

Shift supports two types of parallelization that may be used
individually or in tandem: client parallelization and host
parallelization. Client parallelization allows multiple Shift
clients to run on the same host when a transport does not
have its own parallelism or when a single client cannot fully
utilize all the host’s resources. Figure 7a shows the local
performance of each supported transport when transferring
a 64GB batch of 64 1GB files across varying numbers of
clients. As can be seen, mcp gets little benefit from client
parallelization in this case as its built-in parallelism already
maximizes single host performance. The other transports,
however, see significant performance gains.

While client parallelization can help transports achieve the
maximum performance on a single host, this performance is
only a fraction of what is available across an entire HPC en-
vironment. To overcome single system bottlenecks and allow
transfers to aggregate the resources of many hosts, Shift also
supports host parallelization where clients are spawned on
additional hosts with access to the appropriate file systems.
Figure 7b shows the local performance of each transport
when transferring a 512GB batch of 32 16GB files across
varying numbers of hosts. As can be seen, the performance
benefits of host parallelization are significantly better than
those of client parallelization due to the increase in aggre-
gate CPU, memory, and file system bandwidth. To enhance
the applicability of both parallelization mechanisms, Shift
also supports splitting of single files (both local and remote)
across clients/hosts. This capability relies on transports that
support partial file transfer, so cannot be used with bbcp,
bbftp, or rsync.

3000

]

—— bbep

2500 | ____ poitp
rrrrrr cp-perl
fish
2000 _ gridftp =i

mcp
rsync

1500 | - = -
1000 |

500 T

Local Transfer Performance (MB/s)

Parallel Clients

(a) Client parallelization performance

12000

_ bbcp‘
-~ -~ bbftp
10000 f ------ cp-perl
fish

—-—- gridftp
mep
- - rsync

8000

6000

4000

Local Transfer Performance (MB/s)

2000 +

1 2 4 8 16 32
Parallel Hosts

(b) Host parallelization performance

Figure 7: Using parallel clients/hosts takes advantage of spare resource capacity on a single host/across multiple hosts.

While the precise details of Shift’s parallelization implemen-
tation have been discussed in previous work [9], the basic
mechanism is that the Shift manager is provided with local
file system mount information across user-accessible front-
end systems by administrators (through automated scripts).
Shift understands how to utilize this information to deter-
mine equivalency of a variety of file system types including
CXFS, DMF, GPFS, Lustre, and NFS. Shift utilizes file sys-
tem equivalency to determine onto which hosts a transfer
can be parallelized. Shift automatically learns about the file
systems on the user’s remote client systems as they run re-
mote transfers. Alternatively, a host list or host file (e.g.
$PBS_NODEFILE) can be given to explicitly specify the client
hosts to use in the transfer. Once Shift has this information
available, parallelizing a transfer on N hosts is as simple as
adding the option "--hosts=N".

4.2 Global Throttling

With the ability to trivially throw massive resources into
a single transfer comes the promise of significantly lower
turnaround time for users, but the danger of easily over-
whelming components of the environment relied upon by
other users and processes. For instance, highly loaded CPUs
on front-end systems can cause slow interactive response
time, file system overload can decrease I/O rates within jobs,
thereby wasting computational resources, or tape-backed file
systems may be filled up faster than tapes can be written,
thereby causing a denial of service for users trying to re-
trieve files. In general, the more users that take advantage
of the parallelization capability, the greater the potential for
resource exhaustion becomes.

To allow users to utilize parallel resources while preserving
the stability of the environment, Shift supports several va-
rieties of throttling. Client hosts within individual transfers
can be throttled at a given CPU percentage, target disk
usage, I/O rate, and/or network rate. These can be spec-
ified by users directly so they don’t take up too much of
their own system’s resources or may be specified centrally
for all transfers. More importantly, Shift supports throttling
globally across all transfers involving any/all users, any/all
hosts, and/or any/all file systems. Transfers involving users
or hosts may be throttled at a given I/O and/or network
rate while transfers involving file systems may be throttled
at a given disk usage and/or I/O rate. These mechanisms
allow all three of the example scenarios above to be handled

efficiently. CPU utilization on front-ends can be limited by
client throttling. File system overload can be prevented by
specifying the portion of the file system bandwidth that may
be taken up by transfers. Finally, transfers to tape-backed
file systems can be suspended and resumed automatically at
specific disk utilizations.

Global throttling is based on information returned from cli-
ents on the various loads they are generating while request-
ing a new batch of operations to process. When a client
requests a new set of operations from the manager, the
manager examines the current loads of all transfer to de-
termine if any limits relevant to the invoking transfer are
being violated. If so, the manager divides up the corre-
sponding resource equally among the users of all relevant
transfers. When the collective load of the invoking user’s
transfers are under that user’s share, those transfers will
proceed at full rate with any unused resources temporar-
ily divided up amongst other users. If the user’s transfers
exceed their share, that share is divided up equally among
all their transfers. Transfers that are over their portion of
the user’s share are directed to sleep for the time needed to
bring their average load down to their share. This approach
allows all users to have a fair share of available resources
during periods of heavy activity, but allows individual users
to consume up to the full threshold when resources are idle.

Figure 8 shows a 512GB parallel local file transfer with-
out throttling and with write throttling on the destination
file system at 4 GB/s. As can be seen, without throttling,
the transfer operates at maximum speed until completion.
When the destination file system is throttled, however, the
transfer oscillates above and below the threshold in an at-
tempt to keep its average performance at the specified limit.
The synthetic test in the figure represents a worst case where
many transfers of the same size are initiated at the same time
so their periods of activity and inactivity are synchronized,
thereby producing higher highs and lower lows than would
happen in a normal production setting where transfers will
have varying sizes and start times leading to activity that
more closely straddles the throttling limit.

4.3 Load Balancing

In the case of local transfers, all file system activity occurs
on the client host. In the case of LAN/WAN transfers, how-
ever, two hosts are each performing one half of the total /0.

10000 — T
9000

Unthiottled (5.34 GB/s) —
Throttled (3.62 GB/s) 1

8000
7000 +
6000
5000
4000
3000 +

E Configured Limit! 3

Local Write Performance (MB/s)

2000 |
1000 |/:

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time

Figure 8: Global throttling ensures fairness
and preserves the stability of the environment.

7000

T T
- - - - Disjoint remote hosts -7
Same remote host 7

6000 -

5000 -

4000 -

3000 -

2000 -

1000 +

LAN Transfer Performance (MB/s)

1 2 4 8 16 32
Client Hosts

Figure 9: Load balancing avoids single system
bottlenecks in multi-user and parallel transfers.

32 Hosts
16 Hosts - - - -

CPU Utilization (%)
Memory Utilization (%)

4 Hosts
2 Hosts -——
1 Host

32 Hosts 32-way dd write
16 Hosts - - -~
8 Hosts ------
4 Hosts
2 Hosts ——
1 Host

6000

5000 |- iperf IPoIB

4000 | 1

3000 |

32 Hosts
16 Hosts - - - -

2000 -

1/0 Bandwidth Utilization (MB/s)

4 Hosts
: ' 2 Hosts — —
! : \ 1 Host

1000 [

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time

(a) CPU utilization

0 .
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Time

(b) Memory utilization

0 L -
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time

(¢) I/O utilization

Figure 10: IPoIB bandwidth is the likely bottleneck on the destination host during a parallel all-to-one remote transfer.

Users are creatures of habit and have a tendency to specify
the same host for every login or transfer destination. For
example, at the NAS facility, even though a load balancing
alias exists for front-end systems, inevitably the lowest num-
bered front-end, which is also featured in examples in the site
user guide, always ends up having the most users logged in.
While basic login sessions do not typically consume signifi-
cant system resources, file transfers stress all aspects of the
system including CPU (especially during integrity-verified
transfers), memory, network interconnects, and file system
I/0. If users behave similarly with transfers and all end up
running their remote transfers to the same front-end, it may
degrade the performance of their transfers unnecessarily as
other front-ends may have resources available.

Figure 9 shows the aggregate performance of a varying num-
ber of client hosts each performing a 16GB bbcp LAN trans-
fer to the same or disjoint remote hosts. As can be seen,
when the remote hosts are independent from each other, the
performance continues to increase as more remote transfers
are initiated. When the remote host is the same across trans-
fers, however, aggregate performance quickly levels off. To
get an idea of the bottleneck involved in this case, Figures
10a, 10b, and 10c show the CPU, memory, and 1/O uti-
lization on the target during the transfers. As can be seen,
even at 32 source hosts, the destination CPU has a maxi-
mum utilization of only 46%. Memory utilization does hit
99% above 4 hosts, but I/0O hits its maximum much earlier,
hence memory is unlikely to be the bottleneck.

In the testing environment, the destination host is connected
to the file system using 4x FDR Infiniband, which has a max-
imum bandwidth of 7 GB/s. As shown in Figure 10c, the

maximum performance of a 32-way dd write was measured
at 6.23 GB/s, which is significantly higher than the maxi-
mum write performance achieved of 4.35 GB/s. Nodes com-
municate with each other over a separate 4x FDR Infiniband
link using IPoIB to support standard TCP/IP applications.
Using iperf to measure the IPoIB performance, however, re-
sulted in a maximum of 4.775 GB/s, which is only 10% more
than the maximum write performance achieved. Hence, the
limiting factor is likely IPoIB performance. Because Shift
understands the file systems mounted on each host, it can
map the remote host initially specified by the user into one
or more equivalent hosts that have lower load. In the case
of remote transfers, Shift also ensures that all clients are us-
ing different remote hosts when available to minimize single
system bottlenecks.

S. FILE SYSTEM OPTIMIZATION

While transfer speed is immediately obvious to users as they
are given the number directly in Shift’s status output, other
performance factors exist that may only show up later during
computational jobs or when retrieving files from tape. In
particular, different file systems have various idiosyncrasies
that affect read/write performance, stability, and operating
cost. By addressing these factors within Shift at the time of
transfer, users will eventually see a performance gain even
though they may not be aware of it.

5.1 Tape Optimization

In HPC environments, high end disk arrays store user data
for use by thousands of computational nodes. These sys-
tems have very high performance but come at very high
cost. Since scientific users are constantly creating new and

Tépe Write'
Buffered dd Read - - - -
300 f..-” Direct dd Read ------ g

Performance (MB/s)

50

1 4 16 64 256 1024 4096 16384 65536

Source File Extents

(a) Tape write/file read performance by extent

2500

——— bbep
---- bbftp
rrrrrr cp-perl /
fish 2
—-—- gridftp s
mep 7
1500 | . rsync /

2000 -

1000 Tape Writes Degrade

Extents Produced

500 -

1 4 16 64
File Size (GB)

(b) Extents produced by transport and file size

Figure 11: Tape write speed decreases significantly beyond 1000 extents, which is easily reached when transferring larger files.

very large data sets or reprocessing old data sets with new
techniques, and expanding online disk capacity beyond a
certain point becomes cost prohibitive, hierarchical storage
systems backed by tape libraries are used to archive older
files in a more cost effective manner while still allowing them
to be retrieved to disk when needed. While tape libraries
provide much higher density at a fraction of the cost, their
performance is highly constrained by slow-moving physical
components such as robotic assemblies and tape cartridges.
Because it is much more difficult to add additional robots
than another bank of disk drives, it is imperative that tapes
be read/written at the fastest speeds. One phenomenon ob-
served at the NAS facility was the severe degradation of tape
speed in some files copied by mcp, which uses concurrent
threads to increase performance, but was found to some-
times create large numbers of file extents when doing so
that were impacting tape write speed.

Figure 11a shows the tape write and file system read per-
formance for varying numbers of file extents. Write mea-
surements were obtained from a dedicated SGI CXFS file
system to a dedicated Spectra Logic TFinity tape library
with LTO-6 drives. File system read numbers were obtained
using dd from the same file system with buffered and direct
1/0. As can be seen, after 1024 extents, tape write perfor-
mance drops significantly. On the file system side, buffered
reads produce consistent results across all numbers of ex-
tents, but direct reads drop in very similar fashion to tape
writes. While the measurements were not perfectly aligned,
there was strong evidence that the cause of the degradation
was the use of direct I/O in the tape subsystem, which was
later confirmed by SGI.

To understand the potential for the problem to occur, Fig-
ure 11b shows the number of extents produced by different
transports for varying file sizes. While the extents will vary
depending on other activity and current free blocks on the
file system, the figure shows that transports can easily cross
the threshold at which tape write performance degrades with
a fairly small file by archival standards (i.e. 64GB). To
minimize the number of extents in transferred files to the
degree possible, Shift supports preallocation of files, which
will thereby maximize tape utilization during writes.

The downside of preallocation is that sparse files, whose size
is greater than their disk utilization due to holes that are

not stored on disk, are forced to store all bytes on disk.
This can both surprise users whose disk quotas can rapidly
change after a sparse file is made regular and increases disk
usage unnecessarily, which is especially detrimental to tape-
backed file systems that may not have as much online space
available. To get the benefits of preallocation while mini-
mizing its drawbacks, Shift supports a configurable sparsity
threshold at which preallocation will not be performed, al-
lowing sparse files to stay sparse while preallocating for the
vastly more common regular files. Note that preallocation
is not effective for bbftp due to its use of temporary files
without the ability to overwrite existing files.

Once a file has been migrated to tape and removed from
disk, it must be retrieved back to disk from tape before it can
be transferred. In the case of SGI's Data Migration Facility
(DMF), files will be retrieved automatically when accessed if
they are not already online with the calling program blocked
until the file is available. Letting DMFE’s automatic mecha-
nism take care of retrieval during a transfer of multiple files
is non-optimal, however, as the transfer may enter a cycle
of retrievals and copies where DMF does not have a chance
to minimize tape movement and/or may even unmount the
tape by the time one file has been copied and the next re-
trieval begins. By manually initiating a retrieval of all files
to be transferred, DMF is given a chance to retrieve files on
the same tape in the most efficient manner.

Figure 12 shows the difference in retrieval time between
batched and sequential retrievals of varying numbers of 1GB
files. As can be seen, retrieval time is significantly greater
when files are retrieved one after the other compared to when
they are retrieved in a single batch. When Shift determines
that a transfer is being initiated from a DMF file system,
it automatically issues a request to retrieve all files in the
transfer so that hopefully, most files will be online by the
time it tries to copy them. Shift also reissues the retrieval of
each batch of files it is about to transfer in case the files have
been pushed back offline by the time it gets to them. While
Shift currently only supports DMF (since that is the only
tape system available to the author), the approach taken for
optimizing tape retrievals is applicable to many such systems
by using the equivalent to DMF’s dmget command (e.g. in
IBM’s TSM and HPSS systems, the equivalents would be
“dsmc retrieve” and “hsi in”, respectively).

1600

Seﬁuential ' ' ' '
1400 | ---- Batched d

1200

1000

800

Tape Retrieval Time (s)

400

200

1GB Files

Figure 12: Batched tape retrievals are more
efficient due to minimized tape movement.

2500

Local (m‘cp)
~-—- LAN (fish)
,,,,,, WAN (fish)
GNU tar

2000 -

1500

1000

500 -

Tar Creation Performance (MB/s)

Parallel Hosts

(a) Tar creation performance

300

7 I S S A
---- Read L R Pl
250 | .
@
o
2 200
3
g
g 1501
8
5
o 100 |
Py
&
8
50 |
=
1 4 16 64 256 1024 4096 16384 65536
Source File Size (MB)
Figure 13: Tape 1/O is more efficient with

larger files where tapes can reach full speed.

6000

Local (m(‘:p)
~-—- LAN (fish)

5000 | oo WAN (fish)
GNU tar

4000 -

3000 -

2000 -

Tar Extraction Performance (MB/s)

1000

Parallel Hosts

(b) Tar extraction performance

Figure 14: Shift can reach significantly higher speeds than GNU tar using high performance transports and parallelization.

5.2 Tar Creation/Extraction

From the user’s perspective, directory hierarchies from scra-
tch space could ideally just be copied as is to tape-backed
storage so every file could simply be accessed individually as
needed. From a stability perspective, however, doing so is
very detrimental to the file system. First, tape-backed stor-
age typically has a size threshold below which files are kept
on disk instead of being migrated to tape. So a directory
structure that is large in aggregate size but that consists of
many small files may eat up significant portions of the file
system and never be migrated to tape. Even when the files
are above the size threshold, however, it is still detrimen-
tal to the system when the files are not large enough to be
efficiently written/read to/from tape.

Figure 13 shows tape read and write performance for files
of varying size. As can be seen, read performance is only
maximized for files above 512MB and write performance is
only maximized for files above 8 GB. The standard solution
for this problem is to have users aggregate data into tar files
with enforcement using quotas on the number of files to pre-
vent huge directory copies. This is non-optimal for usability
since both tar creations and extractions are extremely slow
at around 100 MB/s. In addition, users may not know what
a migrated archive contains unless they retrieve it from tape
to list its contents, they have no assurance whether individ-
ual files were copied intact, and may have to retrieve huge
archives when only a small number of files are needed from
within. If scratch directories are not mounted on the archive
system, users may also not have enough quota left to even
create a tar file to free up space needed for other activities.

Shift has built-in support for tar creation and extraction
without the need to use the tar utility itself, which allows
all of the above issues to be addressed. Shift can utilize high
performance transports in addition to its parallelization ca-
pabilities to copy data in and out of tar files at rates far
beyond the tar command even on a single node. Shift can au-
tomatically create index files of tar contents that can be kept
online due to their small size so users know exactly which
archives contain which files. Shift can verify the integrity
of files copied into or out of tar files and record checksums
for later use to give users assurance that their long term
archives are intact before deleting the originals. Shift can
automatically break tar creations into multiple tar files of
a given size, allowing users to retrieve smaller amounts of
data from tape when only a subset of the files are needed.
Finally, Shift can create and extract tar files directly over
the network so users can always create archives regardless
of their quota on the scratch file system.

Figures 14a and 14b show the tar creation and extraction
performance to/from a Lustre file system, respectively, of
Shift over different numbers of hosts locally as well as re-
motely across the LAN/WAN. On a single local host, Shift
can achieve over 3.6 times the creation performance of GNU
tar up to 21x on 16 hosts. Remote creation over the LAN
achieves almost 1.7x on one host up to almost 20x on 16
hosts. Extraction is faster due to Lustre single file read
performance being faster than single file write performance.
Local extraction can be done at almost 10x GNU tar on one
host to over 56x on 16 hosts. LAN extraction is at almost
2x on one host up to over 22x on 16 hosts. Tar operations

12000

— 64 Nodes

---- 32 Nodes

10000 - ------ 16 Nodes A
8 Nodes /

——- 4 Nodes

8000 - ____ 2 Nodes

6000
4000 -

2000 |- el =

Noncontiguous Write Performance (MB/s)

Lustre Stripes

(a) Lustre striped write performance

3500

— 64'Nodes
---- 32Nodes
rrrrrr 16 Nodes
8 Nodes
2500 —-—- 4 Nodes
—— 2 Nodes

3000 -

2000 |-
1500 |
1000 |~

500 [

Noncontiguous Read Performance (MB/s)

Lustre Stripes

(b) Lustre striped read performance

Figure 15: Lustre I/O rate increases with stripes up to a maximum, but too many stripes per reader can decrease read speed.

over the WAN are currently limited by SSH performance and
only achieved 80% of GNU tar on one host up to 3.6x/4.4x
for creation/extraction on 16 hosts.

5.3 Lustre Striping

Lustre is a high performance file system that is used by
over 60% of the top 100 supercomputers in the world [26].
Lustre utilizes parallel striping across large numbers of disks
to achieve higher aggregate performance than is possible on
a single-disk file system. Unlike other parallel file systems
such as CXFS and GPFS, however, Lustre striping must be
specified explicitly before a file is first written. Striping can
significantly impact I/O performance. A greater number of
stripes provides more available bandwidth but also produces
greater resource contention during metadata operations. A
large file stored over a smaller number of stripes produces
imbalances in the underlying Lustre OSTs. A file can only
be restriped by copying it in its entirety, so it is critical that
striping be set correctly before it is first written.

Figures 15a and 15b show the effects of striping on Lustre
write and read performance, respectively, using the contigu-
ous memory, non-contiguous file access case of the noncontig
benchmark [19] across varying numbers of nodes and stripes
using a file size equal to one GB per node. This bench-
mark simulates noncontiguous I/O access patterns that may
be found in scientific applications. As can be seen, the
higher the number of nodes, the higher the number of stripes
needed to maximize write performance with little drop-off
when using more stripes once the maximum is reached. Read
performance also benefits from more stripes, but levels off
much more quickly and increasing the number of stripes once
the maximum rate is reached for a given number of readers
actually decreases performance in many cases. Hence, it is
beneficial to stripe files in proportion to the number of read-
ers who are going to access it. A more detailed treatment of
striping is addressed in previous work [10].

The benefits of striping in file transfers are twofold. First,
using greater stripes for destination files increases write per-
formance during parallel transfers. Second, later parallel
jobs that read the files will achieve higher performance than
they would at default striping, thereby allowing better uti-
lization of computational resources. In previous work [10],
stripe-awareness was added to a set of standard system tools
so that files would be striped automatically as users per-

formed day-to-day operations. With Shift’s ability to paral-
lelize transfers across many hosts with many different tools,
a more general approach is used where destination files on
Lustre file systems are created with the appropriate striping
before being filled with data by the transport. Note that this
technique is not effective for bbftp due to its use of tempo-
rary files without the ability to overwrite existing files. By
default, Shift will restripe if the source file is not on Lustre
or has default striping, and will preserve striping when the
source is on Lustre with non-default striping. This allows
users who have specifically striped files for highest applica-
tion performance to retain striping settings.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented the Shift automated transfer tool
and the mechanisms it employs to achieve better perfor-
mance while preserving the stability of HPC environments.
Shift encapsulates best practices understood by domain ex-
perts during transfers so that scientists can focus on their
science without the need to study file transports, resource
management, and file systems as well. Shift understands
how to utilize the variety of transports that might be de-
ployed throughout a widely distributed user base, how to
maximize the performance achievable by each, and the sce-
narios in which each is most effective. In particular, Shift
automatically tunes the TCP window size and number of
TCP streams used by bbcp, bbftp, and gridftp, automati-
cally selects the highest performance SSH cipher and MAC
algorithm available for fish, rsync, and sftp, and automat-
ically selects the highest performing transport for batches of
files based on average file size, transfer type, and availability.

Shift understands which resources are available in a particu-
lar HPC environment and how to utilize them for significant
performance increases while preventing resource exhaustion.
These include automatically parallelizing transfers on the
same host and/or across multiple hosts to take advantage
of excess resource capacity, automatically throttling trans-
fers according to various administrator-defined local and/or
global criteria to prevent system overload, and automatically
load balancing transfers across parallel clients and remote
hosts to eliminate single system bottlenecks.

Finally, Shift understands the file systems to which and
from which files may be transferred and the nuances to their
use that affect performance and stability behind the scenes.

Reads and writes of tape-backed file systems are optimized
for maximum tape performance by automatically retriev-
ing migrated files in batches and automatically preallocating
files below a configured sparsity, a high speed tar creation
and extraction capability increases usability by significantly
reducing turnaround time of archive operations and allow-
ing direct remote archival to overcome quota limitations,
and files transferred to Lustre file systems are automati-
cally striped according to size to maximize read performance
in subsequent batch jobs. Together these 10 automatically
encapsulated best practices help Shift achieve significantly
higher performance than any of its supported transports on
their own. Shift is available as open source software [25].

There are variety of directions for future research. One area
of investigation within the NAS environment is using a small
cluster of nodes dedicated to Shift transfers, which would al-
low automatic parallelization to be ramped up without bog-
ging down front-end systems. Shift’s remote tar capabilities
are performed using partial transfers of files directly into or
out of tars during creation and extraction, respectively, us-
ing differing source and destination offsets. Currently, only
the built-in fish or sftp-perl transports support this capa-
bility, which are both limited by the speed of SSH. To over-
come the SSH bottleneck and substantially improve remote
tar performance, an attempt will be made to augment mcp
with a remote transfer capability. Some transports, such as
bbep and rsync, have options to limit the bandwidth utilized
to a specific rate during transfers. These options could be
used by Shift during throttling as an alternative to idling for
a specific period of time. This could potentially allow more
consistent throughput without as much oscillation around
the threshold as can occur in the current mechanism.

7. ACKNOWLEDGMENTS

Thanks to M. Cary, L. Cox, S. Emery, and A. Meyer for
suggesting most of Shift’s tape optimizations and providing
assistance during tape benchmarking. Thanks to J. Chang
and S. Cheung for valuable discussions about I/O patterns
found in scientific applications. Finally, thanks to D. Talcott
for clarifying various Infiniband performance characteristics.

8. REFERENCES

[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, I. Foster: The Globus Striped
GridFTP Framework and Server. ACM/IEEE
Supercomputing 2005 Conf., Nov. 2005.

[2] B. Allen, J. Bresnahan, L. Childers, et al.: Globus
Online: Radical Simplification of Data Movement via
SaaS. Preprint CI-PP-5-0611, Computation Institute,
Univ. of Chicago, Jun. 2011.

[3] BbFTP. http://doc.in2p3.fr/bbftp.

[4] N. Desai, R. Bradshaw, A. Lusk, E. Lusk: MPI
Cluster System Software. 11th European PVM/MPI
Users’ Group Meeting, Sept. 2004.

[5] Dcp. https://github.com/hpc/dcp.

[6] Fast Data Transfer. http://monalisa.cern.ch/FDT.

[7] Gleicher Enterprises: HPSS Tar Man Page. http:
//www.mgleicher.us/GEL/htar/htar_man_page.html.

[8] A. Hanushevsky, A. Trunov, L. Cottrell: Peer-to-Peer
Computing for Secure High Performance Data
Copying. 12th Intl. Conf. on Computing in High

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

23]

[24]
25]
[26]

27]

(28]

Energy Nuclear Physics, Sept. 2001.

P.Z. Kolano: High Performance Reliable File Transfers
Using Automatic Many-to-Many Parallelization. 5th
Wkshp. on Resiliency in High Performance
Computing, Aug. 2012.

P.Z. Kolano: Transparent Optimization of Parallel
File System I/O via Standard System Tool
Enhancement. 2nd Intl. Wkshp. on High Performance
Data Intensive Computing, May 2013.

P.Z. Kolano, R.B. Ciotti: High Performance
Multi-Node File Copies and Checksums for Clustered
File Systems. 24th USENIX Large Installation System
Administration Conf., Nov. 2010.

T. Kosar, M. Livny: A Framework for Reliable and
Efficient Data Placement in Distributed Computing
Systems. Jour. of Parallel and Distributed Computing,
vol. 65, no. 10, 2005.

P. Kunszt, P. Badino, R. Brito da Rocha, J. Casey, A.
Frohner, G. McCance: The gLite File Transfer
Service. 1st EGEE User Forum, Mar. 2006.

P. Machek: Flles transferred over SHell protocol (V
0.0.2). http://cvs.savannah.gnu.org/viewvc/
checkout/mc/mc/vEs/README. fish.

R.K. Madduri, C.S. Hood, W.E. Allcock: Reliable File
Transfer in Grid Environments. 27th IEEE Conf. on
Local Computer Networks, Nov. 2002.

K. Matney, S. Canon, S. Oral: A First Look at
Scalable I/O in Linux Commands. 9th LCI Intl. Conf.
on High-Performance Clustered Computing, Apr.
2008.

K.D. Matney, G. Shipman: Parallelism in System
Tools. 52nd Cray User Group Conf., May 2010.

E. Ong, E. Lusk, W. Gropp: Scalable Unix Commands
for Parallel Processors: A High-Performance
Implementation. 8th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, Sept. 2001.
Parallel 1/O Benchmarking Consortium. http://www.
mcs.anl.gov/research/projects/pio-benchmark.
Parsync. http://moo.nac.uci.edu/ hjm/parsync.
Pcp. https://github.com/wtsi-ssg/pcp.

R.S. Prasad, M. Jain, C. Dovrolis: Socket Buffer
Auto-Sizing for High-Performance Data Transfers.
Jour. of Grid Computing, vol. 1, no. 4, 2003.

C. Rapier, B. Bennett: High Speed Bulk Data
Transfer Using the SSH Protocol. 15th ACM Mardi
Gras Conf., Feb. 2008.

Rsync. http://samba.org/rsync.

Shift. http://shiftc.sourceforge.net.

S. Simms: Choose Lustre. Lustre User Group 2015
Conf., Apr. 2015.

S. Thulasidasan, W. Feng, M.K. Gardner: Optimizing
GridFTP through Dynamic Right-Sizing. 12th IEEE
Symp. on High Performance Distributed Computing,
Jun. 2003.

E. Yildirim, D. Yin, T. Kosar: Balancing TCP Buffer
vs. Parallel Streams in Application Level Throughput
Optimization. 2nd Intl. Wkshp. on Data-Aware
Distributed Computing, Jun. 2009.

