
Formally Specifying and Verifying Real-Time Systems

Richard A. Kemmerer Paul Z. Kolano
Reliable Software Group

Computer Science Department
University of California

Santa Barbara, CA 93106 USA
+1 805 893 4232

{kemm,kolano}@cs.ucsb.edu

ABSTRACT
A real-time computer system is a system that must
perform its functions within specified time bounds.
These systems are generally characterized by complex
interactions with the environment in which they operate
and strict time constraints whose violation may have
catastrophic consequences. The need for these software
systems to be highly reliable is evident. One way to
achieve this reliability is through formal development.

Although research in the area of real-time systems has
been quite active and a number of experimental
environments supporting formal specifications have been
developed, the search for adequate notations and tools is
still ongoing. In order to get designers to use formal
methods to develop real-time systems it is necessary to
provide them with an integrated set of tools for writing
and analyzing their specifications. The ASTRAL
Software Development Environment (SDE), which is an
integrated set of tools based on the ASTRAL formal
framework, is intended to meet this need. The tools that
make up the support environment are a syntax-directed
editor, a specification processor, a verification condition
generator, a mechanical theorem prover, and a browser
kit.

This paper discusses the goals for ASTRAL, why they
were important, and how they were met. It will also give
an overview of the ASTRAL Software Development
Environment.

1. INTRODUCTION
A real-time computer system is a system that must
perform its functions within specified time bounds. Real-
time computer systems are increasingly being used in
critical applications such as aircraft avionics, nuclear
power plant control and patient monitoring.These
systems are generally characterized by complex
interactions with the environments in which they operate,
and strict time constraints whose violation may have
catastrophic consequences. The need for these software
systems to be highly reliable is evident.

More than two decades ago Wirth [Wir 77] classified
programs into three types sequential, parallel, and

"processing-time dependent" (real-time). The complexity
of writing correct systems increases with the introduction
of parallelism and is further complicated with the
introduction of real-time constraints. Similarly, the
difficulty of specification and verification increases from
sequential to parallel to real-time systems.

Like sequential systems, real-time systems are judged
against critical correctness requirements. That is, both
sequential systems and real-time systems have critical
functionality requirements. Real-time systems, however,
must also meet critical performance deadlines. If a real-
time system performs the correct function, but delivers
the result too late, then it has failed to satisfy its
requirements. For example, if a process monitoring a
nuclear reactor detects a malfunction but does not respond
in a timely fashion this would violate a performance
criteria and likely jeopardize the safety of the system and
endanger human life. Therefore, the verification of real-
time systems involves demonstrating that the specified
system meets the performance deadlines in every case and,
in particular, in the worst case.

Some of the issues involved in building real-time
systems are real-time architectures, operating systems,
programming languages, scheduling algorithms and
communication protocols. Many real-time systems have
been built and apparently work. Nevertheless, today many
such systems are being built using algorithms, techniques
and tools that might be described as marginally adequate
for sequential systems, less than adequate for concurrent
systems, and wholly unacceptable for real-time systems
in critical applications. Improvements are needed in
several of the above mentioned areas, each of which
represents an important research area in its own right, but
the topic addressed in this paper is improving system
reliability through better software development methods
and tools, and specifically, through applying formal
methods to the development of real-time systems.

Although research in the area of real-time systems has
been quite active and a number of experimental
environments supporting formal specifications have been
developed, the search for adequate notations and tools is

still ongoing. In order to get designers to use formal
methods to develop real-time systems it is necessary to
provide them with an integrated set of tools for writing
and analyzing their specifications. The ASTRAL
Software Development Environment (SDE), which is an
integrated set of tools based on the ASTRAL formal
framework, is intended to meet this need.

The Reliable Software Group at UCSB has designed and
implemented a language for formally specifying and
verifying sequential software systems, called ASLAN
[AK 85]. In addition, they have designed an extension of
the ASLAN specification language called RT-ASLAN,
for specifying real-time systems [AK 86]. The ASLAN
specification language served as a basis for the ASTRAL
language and some of the RT-ASLAN approaches were
also adapted to ASTRAL. The ASTRAL language,
however, was developed as a new language. Although the
ASLAN state machine approach with layering is retained,
ASTRAL uses a novel approach to modeling interprocess
communication, and many new specification ideas are
introduced for expressing interaction with the
environment and timing relationships.

TRIO is a logic language designed at the Politecnico di
Milano as a formal notation for specifying and verifying
timing requirements [GMM 90]. The research and
experimentation on TRIO initially addressed the issue of
executing TRIO specifications [MMG 92]. Thus, TRIO
can be considered as a real-time machine level formal
language and this is why it was decided to build a high
level language that could be translated to TRIO. The
TRIO language was later extended with suitable object
oriented mechanisms for modularizing a complex
specification [MS 94]. However, it still lacks many
useful concepts which are specific to ASTRAL, such as
assumptions about the environment, critical requirements,
and a modular proof system.

Using this ASLAN and TRIO experience, a new formal
specification language for real-time systems has been
developed (ASTRAL), and several case studies have been
developed using this language. The semantics of the
language have also been formally defined using both a
model theoretic approach and an axiomatic semantic
approach [CSK 94]. This provides a firm theoretical basis
for the development of an ASTRAL support
environment, which constitutes one of the on-going
research directions. A translation scheme for translating
ASTRAL to TRIO was defined for an earlier version of
the ASTRAL language [GK 91]. The experience of
basing the ASTRAL language on ASLAN and translating
ASTRAL specifications into the TRIO logic language
prompted the selection of the name for the language: an
ASlan based TRio Assertion Language.

In the next section the goals and assumptions for this
work are presented. This is followed by an introduction to
the ASTRAL language. Next an overview of the

ASTRAL Software Development Environment will be
presented. Finally, conclusions drawn from this work are
discussed.

2. GOALS AND ASSUMPTIONS
Because there is no point in developing another language
that no developer would choose to use, usability was
emphasized as a main goal in the design of ASTRAL.
Whenever more than one language design choice existed,
the option that made the language more usable was
picked. Similarly, developing a language without state-of-
the-art tools to support its use inevitably results in an
unused language. Therefore, the development of ASTRAL
proceeded in parallel with the initial design of tools for
supporting the language. The plausibility of modifying
and/or extending existing tools, such as the ASLAN
specification processor or the TRIO Executor, for use
with ASTRAL specifications was also constantly factored
into the language design process, although this was not a
primary factor in the decision making process.

In addition to having a language that is usable with tool
support, the other primary goals for the ASTRAL
specification language were that it support specifications
that are layered, compositional, and executable. Layering
and composition are two complementary approaches to
hierarchical system development. A layered specification
method allows one to refine the specification of a process
to show more detail, without changing the interface of the
specified system. This is important because it allows
designers to prove, test, or otherwise examine properties
of a process whose behavior is specified abstractly, and
then iteratively refine the behavioral specification to be as
close to an implementation as appropriate for a given
assurance level. In this way errors can be found early in
the design process, before spending time and money
adding details.

A compositional specification method allows one to
reason about the behavior of a system in terms of the
specifications of its components [Zwi 89]. That is, the
behavior of a system comprising several component
processes is completely determined by the component
specifications. This is important because it modularizes a
system's proof and allows for bottom-up development.

An executable specification language allows developers to
treat specifications as prototypes. This is important
because testing in the design stage, even before
attempting proofs, can be a cost-effective means of
finding design flaws [Kem 85, DK 94].

The computational model for ASTRAL is based on
nondeterministic state machines and assumes maximal
parallelism, noninterruptable and nonoverlapping
transitions in a single process instance, and implicit one-
to-many (multicast) message passing communication.

Maximal parallelism assumes that each logical task is
associated with its own physical processor, and that other

physical resources used by logical tasks (e.g., memory
and bus bandwidth) are unlimited. In addition, a processor
is never idle when some transition is able to execute.
That is, a transition is executed as soon as its
precondition is satisfied (assuming no other transition is
executing). In addition, exported transitions require that a
call be issued from the environment. If a new call is
issued before the previous is handled, the most recent call
supersedes the previous; i.e., ASTRAL does not provide
any automatic ways of buffering external calls. The
maximal parallelism approach was chosen on the basis of
separating independent concerns; that is, first demonstrate
that a design is satisfactory, then, and only then, consider
the scheduling problem imposed by a particular
implementation's limited resources. This approach,
advocated in [FP 88] for real-time systems and in [CM
88] for parallel systems, allows for much cleaner designs
than an approach that starts with scheduling concerns. A
design based on the structure of the system rather than on
its scheduling problems will usually be easier to maintain
and/or modify. In addition, architectures that meet the
maximal parallelism assumptions are becoming more
prevalent.

Process cooperation, which involves both communication
and synchronization, may be achieved in essentially two
ways: either by data sharing or by message passing [BST
89]. The interface specification of RT-ASLAN is an
example of modeling communication with shared data in
a real-time specification language. At the implementation
level, data sharing has obvious performance advantages
and is, therefore, often used in current real-time systems.
However, there is no apparent advantage in using data
sharing at the specification level for describing process
interactions at an abstract level. There are instead obvious
disadvantages. For example, contention for shared data
must be addressed in the specification, which implies that
mutual exclusion also must be addressed. Furthermore,
future real-time systems are likely to be less tightly-
coupled than existing systems. For these reasons, in
ASTRAL cooperation is modeled with implicit message
passing rather than with data sharing. Implicit rather than
explicit message passing was chosen to further simplify
the design and to concentrate on the structure of the real-
time system.

The specifics of the implicit multicast message
communication model are that whenever a process
instance starts executing an exported transition it
broadcasts the start time and the values of the actual
parameters to all interested processes (i.e., any process
that may refer to the start time). When the transition is
completed the end time as well as the new value of any
exported variables that were modified by the transition are
broadcast. Of course, any exported variables that are
modified by a nonexported transition are also broadcast by
the process when the transition completes execution.
Thus, if a process is inquiring about the value of an

exported variable while a transition is being executed by
the process being queried, the value obtained is the value
the variable had when the transition commenced. That is,
the ASTRAL computation model views the values of all
variables being modified by a transition as being changed
by the transition in a single atomic action that occurs
when the transition completes execution. These
broadcasts are also assumed to be instantaneous.

3. ASTRAL LANGUAGE
In ASTRAL, a real-time system is described as a
collection of state machine specifications, each of them
representing a process type of which there may be
multiple statically generated instances. There is also a
global specification, which contains declarations for types
and constants that are shared among more than one
process type, as well as assumptions about the global
environment and critical requirements for the whole
system. Figure 1 presents the syntactic structure for an
ASTRAL specification.

An ASTRAL process specification consists of a sequence
of levels. Each level is an abstract data type view of the
system being specified. The first (“top level”) view is a
very abstract model of what constitutes the process
(types, constants, variables), what the process does (state
transitions), and the critical requirements the process must
meet (invariants and schedules). Lower levels are
increasingly more detailed with the lowest level
corresponding closely to high level code.

The process being specified is thought of as being in
various states, with one state differentiated from another
by the values of the state variables, which can be changed
only by means of state transitions. Transitions are
described in terms of pre- and post- conditions by using
an extension of first-order predicate calculus. Transition
entry conditions describe the constraints that state
variables must satisfy in order for the transition to fire,
while exit conditions describe the constraints that are
fulfilled by state variables after the transition has fired.
An explicit nonnull duration is associated with each
transition. Transitions are executed as soon as they are
enabled (i.e., when their pre-condition is satisfied)
assuming no other transition for that process instance is
executing.

Every process can export both state variables and
transitions; as a consequence, the former are readable by
other processes while the latter are executable from the
external environment. Inter-process communication is
accomplished by broadcasting the values of exported
variables and the start and end times of exported
transitions.

Astral Specification

GLOBAL SPECIFICATION PROCESS SPECIFICATION Process_1 PROCESS SPECIFICATION Process_n

PROCESS
 TYPE
 AXIOM
 CONSTANT
 DEFINE
 ENVIRONMENT
 INVARIANT
 SCHEDULE

IMPORT
 EXPORT
 TYPE
 AXIOM
 VARIABLE
 CONSTANT
 DEFINE
 ENVIRONMENT
 IMPORTED VARIABLES
 INITIAL
 INVARIANT
 CONSTRAINT
 SCHEDULE
 FURTHER ASSUMPTIONS

Level Top_level Level Bottom_levelLevel Lower_level

TRANSITIONS

TYPE
 AXIOM
 VARIABLE
 CONSTANT
 DEFINE
 INITIAL
 INVARIANT
 CONSTRAINT
 SCHEDULE
 FURTHER ASSUMPTIONS
 TRANSITIONS
 IMPLEMENTATION

TRANSITION T_1 TRANSITION T_2 TRANSITION T_n

PARAMETERS ENTRY/EXIT PAIR EXCEPT/EXIT PAIR_1 EXCEPT/EXIT PAIR_k

Time Entry Condition Exit Condition Time Except Condition Exit Condition

...

...

...

...

Figure 1: The ASTRAL hierarchy

In addition to specifying system state (through process
variables and constants) and system evolution (through
transitions), an ASTRAL specification also defines
system critical requirements and assumptions on the
behavior of the environment that interacts with the
system. The behavior of the environment is expressed by
means of environment clauses, which describe
assumptions about the pattern of invocation of external
transitions. Critical requirements are expressed by means
of invariants and schedules. Invariants represent
requirements that must hold in every state that may be
reached from the initial state, no matter what the behavior
of the external environment is, while schedules represent
additional properties that must be satisfied provided that
the external environment behaves as assumed.

In order to assure that an ASTRAL specification satisfies
its requirements, it is necessary to generate and prove the
appropriate proof obligations. ASTRAL proofs are
divided into two categories: intra-level proofs and inter-
level proofs. The former deal with proving that the
specification of level i is consistent and satisfies the
stated critical requirements for each of the processes, as
well as for the global system. The latter deal with
proving for each process type that the specification of

level i+1 is consistent with the specification of level i.
Details of the formal proof system can be found in [CKM
94, CKM 95].

To facilitate reuse and to simplify the construction of
large and complex real-time systems ASTRAL provides
the developer with a composition capability. The
ASTRAL compose clause provides the necessary
information to combine two or more ASTRAL system
specifications (i.e., a global specification and its
associated collection of process specifications) into a
single specification of the combined system. The details
of the composition clause, the process of composing
ASTRAL specifications, and the necessary incremental
proof obligations that need to be generated when
composing two system specifications are presented in
[CK 93].

4 . T H E A S T R A L S O F T W A R E
DEVELOPMENT ENVIRONMENT
In order to get designers to use formal methods to develop
real-time systems it is necessary to provide them with an
integrated set of tools for writing and analyzing their
specifications. The ASTRAL Software Development
Environment is intended to be an integrated set of design
and analysis tools based on the ASTRAL formal
framework. The tools that make up the support
environment are a syntax-directed editor, a specification
processor, a mechanical theorem prover, a specification
testing component, and a browser kit.

The approach that was taken in building the ASTRAL
software development environment was to first build an
executive that integrates all of the component tools. This
executive provides the user with a graphical user interface
running under Unix with X-windows System 11 Release
5 with Motif. It includes extensive context-sensitive help
facilities and the necessary optional features to get the
level of guidance needed by a novice user while not
hindering the experienced specifier. The system provides
navigation windows, which allow the user to navigate
through the specification in a hierarchical manner. A key
design criteria for the environment was that the user
should never need to switch between tools nor should
there be any need for data exchange via temporary files.
That is, the system is intended to be a fully integrated
environment in which the user could change from
specification writing to type checking to generating proof
obligations with a mere button push. In its current state
the software development environment contains stubs for
the tools that are not yet ready to be integrated into the
environment. Each of the component tools and their
current status are discussed in the following subsections.

4 . 1 Syntax-Directed Editor
The ASTRAL syntax-directed editor aids the designer in
constructing ASTRAL formal specifications. With this
editor a user can build the specification in any order
desired. When the user enters a specification component

the syntax is automatically checked. Figure 2 shows the
user interface to the SDE. The core of the SDE is the
navigation window located in the upper left portion. The
navigation window displays the current specification and
allows the user to hierarchically traverse it. By double

clicking on a line of the displayed specification, a user
can move “up” or “down” in the specification hierarchy.
The specification displayed in the navigation window is
the phone system specification of [CGK 96].

Figure 2: Screen Dump of Initial Navigation Window

At this level the user can see that there are two different
process type specifications, in addition to the global
specification. It also shows a popup window for saving
the current specification and the help line explains the
options. The screen dump in Figure 3 is the result of
hierarchically navigating through the phone process and
top level navigation windows and finally creating the
Enter_Digit transition by selecting "transition" off the
"Insert New" menu and then editing the newly created
transition. The edit popup window has been selected to
edit the exit assertion of the transition.

4 . 2 Specification Processor
The specification processor consists of a validation
component and a verification condition generator (i.e.,
proof obligation generator). Because the user is allowed to
enter the specification in any order, it is not always
reasonable to perform all type checking immediately.
Therefore, the user controls when the type checking is to
be done. He/she can choose to type check the entire
specification at any time by selecting the "Validate"
button, which can be seen to the left of the bottom of the
popup window in Figure 2.

The proof obligation generator component of the
specification processor generates the necessary proof
obligations to assure that each process specification is
consistent with its invariants, constraints, and schedules,
and that the properties of the collection of state machine
specifications for the processes of the system is sufficient
to assure the global invariant for the system and in some
cases also the global scheduling constraints. These are
known as the intra-level proof obligations. This tool also
generates the necessary proof obligations to assure that a
less abstract lower level specification for a process is a
correct implementation of the parent specification that it
implements. These are the inter-level proof obligations.
The proof theories for both the intra-level and the inter-
level proofs are defined in [CKM 94, CKM 95]. The
proof obligations are generated by clicking on the
"Actions" button, which can also be seen to the left of
the bottom of the popup window in Figure 2, and
choosing either intra-level or inter-level proof
obligations. Because the theorem prover component has
not yet been integrated in the environment, the resulting
proof obligations are currently written to a file.

Figure 3: Screen Dump of Enter_Digit Navigation Window

4 . 3 Theorem Prover
A mechanical theorem prover component to discharge the
proof obligations generated by the specification processor
will also be integrated into the software development
environment. However, it has been the experience of the
Reliable Software Group that it is more efficient to build
or adapt an existing theorem prover after one knows the
types of theorems that need to be proved. For instance,
when ASLAN was used in the MCC's Spectra software
development environment [GBG 90, Ger 93] both the
HOL [Gor 87] and Boyer and Moore [BM 90] theorem
provers were adapted to prove the proof obligations that
were generated by the ASLAN specification processor.
More recently, the ASLAN specification processor was
coupled to the Otter theorem prover [WM 92], which was
developed at Argonne National Laboratory. Based on this
experience, the integration of a theorem prover was
delayed until a reasonable number of ASTRAL
specifications had been written and the corresponding
proof obligations had been generated. The proof
obligations are currently being analyzed to determine what
existing theorem prover(s) would be best to use.

4 . 4 Specification Testing Tool
In order to reduce the cost of developing reliable systems
that also provide the desired functionality, it is necessary
to provide a means to test the formal specifications early
in the software life cycle. As was mentioned in the
introduction, a scheme for translating ASTRAL formal
specifications to TRIO was defined for an earlier version
of the specification language. To test the feasibility of

this approach a simple example specification that modeled
a traffic light and the traffic on two intersecting streets
was used. The complete specification was manually
translated and the resulting specification was tested using
the TRIO history checker, which was developed at the
Politecnico di Milano [FM 94]. When testing the
specification several problems with the ASTRAL
specification, which revealed the potential for a traffic
accident with the system as specified, were discovered.
This experience lead to the decision to include an
ASTRAL to TRIO translator and the TRIO-based history
checkers as components of the software development
environment.

However, now that a formal semantics for ASTRAL has
been defined, the decision has been made to build on the
Reliable Software Group's experience with directly
executing formal specification languages symbolically.
This experience includes implementing a symbolic
execution tool for testing ASLAN specifications [DK
94], which is called Aslantest. This tool provides
designers and users with a flexible means of animating
system specifications to test for various functional
requirements. The Reliable Software group has also
designed and implemented a symbolic executor, called
CASEX, for a verifiable subset of Ada, which includes
tasking [HK 88]. This tool uses the interleaving
approach, where the execution of component tasks are
interleaved to model their concurrent execution. These
tools are serving as a basis for the ASTRAL specification
testing component, which is currently being designed.

4.5 Browsers
Finally, the software development environment contains
three databases for analyzing inter-process and inter-
transition relationships. These databases store information
about variables, transitions, and processes of the current
specification, and they are automatically updated and kept
consistent every time the user edits anything in the
ASTRAL specification. There are browsers associated
with each of the databases and each of them has a
dedicated window and a query button, which can be seen
to the right of the navigation window in Figure 2. The
browsers help the user to quickly determine what
variables, transitions, or processes are affected by a
change to some existing variable or transition. It is
expected that the browsers will be very useful during the
maintenance phase when the specifications are being
modified.

5. RELATED WORK
MT [CHL 93] is an integrated development environment
for the Modechart language, which incorporates
components similar to those of the SDE. It includes the
ability to hierarchically traverse specifications and invoke
the editor on the displayed portion. MT's Consistency
and Completeness Checker is similar in function to the
SDE's validation procedure, performing a variety of static
checks on the current specification. MT also provides a
simulator which allows users to set up various conditions
and display the results of a single execution path.
Finally, MT has a verifier component to verify certain
types of properties such as starvation and reachability.

STATEMATE [HLN 90] is another graphical
environment for specifying reactive systems based on
statecharts. It includes a number of different editors
supporting statecharts, activity-charts, and module-charts
which, like the SDE editor, check for syntactic errors
immediately upon input. STATEMATE can also
perform various consistency, completeness, and static
logic tests at any time during a session. It also has a
simulator which can be run either interactively or
according to a program specified in a simulation control
language. It can also generate a rapid prototype of the
specified system in C or Ada code so that the simulator
overhead can be avoided.

The Graphical Interval Logic Toolset [KRM 93] provides
support for editing and verifying formulas written in
Graphical Interval Logic. Like the SDE, the editor in the
toolset is syntax-directed to prevent syntactic errors.
Formulas can be easily composed to create more complex
formulas. The toolset also incorporates a theorem prover
which can, given a set of predicates from the user that
supposedly imply a formula, search for and display an
appropriate counterexample, if one exists.

6. CONCLUSIONS
ASTRAL has been used by both its developers and others
to specify a number of interesting real-time systems. In

[CKM 94] the results of using it to formally specify a
CCITT system that consists of a packet assembler
process and several input processes are reported. In [CGK
96] a phone system is composed with a switch to
generate a wide-area phone system. The use of ASTRAL
as a hardware description language was demonstrated in
[BCF 91]. In that paper it was used to formally specify a
checksum generator and a universal asynchronous receiver
transmitter (UART) between a modem and a
microprocessor. At Delft University of Technology (The
Netherlands) ASTRAL was used to specify a robot
control system [BBK 95]. These case studies demonstrate
the expressiveness and the power of the language. They
also show ASTRAL’s usefulness for specifying varying
types of real-time systems from basic hardware to
complete communication systems. The packet
assembler, the wide-area phone system, the standard
railroad crossing and elevator examples, and an Olympic
boxing scoring system have all been specified and
validated using the SDE.

The SDE offers features that reduce errors and facilitate
use throughout all stages of the specification development
process. In the initial specification phase, the editor
prevents syntax errors and the formatter enhances
readability. In the middle phase, the validation function
reports type errors, scoping errors, missing parameters,
etc., and the VCG component generates the proof
obligations needed to prove the specification correct with
respect to its critical requirements. Finally, the browsers
and compose/build features provide for easy maintenance
and reuse of specifications.

7. ACKNOWLEDGMENTS
The authors would like to thank Richard Lee and Marco
Mussini who worked on a prototype of the ASTRAL
Software Development Environment.

REFERENCES
[AK 85] Auernheimer, B. and R. A. Kemmerer,

ASLAN User's Manual, TRCS84-10, Department of
Computer Science, University of California, Santa
Barbara, March 1985.

[AK 86] Auernheimer, B. and R.A. Kemmerer, "RT-
ASLAN: A Specification Language for Real-Time
Systems," IEEE Transactions on Software
Engineering, Vol. SE-12, No. 9, September 1986.

[BST 89] Bal, H.E., J.G. Steiner, and A.S. Tanenbaum,
"Programming Languages for Distributed Computing
Systems," ACM Computing Surveys, Vol. 21, No.
3, September 1989.

[BM 90] Boyer, R. and J. Moore, "A Theorem Prover for
Computational Logic", Proceedings of the 10th
International Conference of Automated Deduction,
Kaiserslautern, Germany, July 1990.

[BBK 95] Brink, K., L. Bun, J. van Katwijk, and W.J.
Toetenel, “Hybrid Specification of Control Systems”,
First IEEE International Conference on Engineering of
Complex Computer Systems, Ft. Lauderdale, Florida,
November 1995.

[BCF 91] Buonanno G., A. Coen-Porisini, W.
Fornaciari, “Hardware Specification Using the
Assertion Language ASTRAL”, Proceedings of the
Advanced Research Workshop on Correct Hardware
Design Methodologies, Torino, Italy, June 1991.

[CM 88] Chandi, K.M. and J. Misra, Parallel Program
Design: A Foundation, Addison-Wesley, 1988.

CHL 93] Clements, P.C., C.L. Heitmeyer, B.G. Labaw
and A.T. Rose, “MT: A Toolset for Specifying and
Analyzing Real-Time Systems”, Proceedings of the
Real-Time Systems Symposium, December 1993.

[CGK 96] Coen-Porisini, A., C. Ghezzi, and R.A.
Kemmerer, “Specification of Realtime Systems Using
ASTRAL”, Report no. TRCS 96-30, Department of
Computer Science, University of California, Santa
Barbara, California, July 1996.

[CK 93] Coen-Porisini, A. and R.A. Kemmerer, “The
Composability of ASTRAL Realtime Specifications”,
Proceedings of the International Symposium on
Software Testing and Analysis, Cambridge,
Massachusetts, July 1993.

[CKM94]. Coen-Porisini, A., R.A. Kemmerer and D.
Mandrioli, “A Formal Framework for ASTRAL Intra-
level Proof Obligations”, IEEE Transactions on
Software Engineering, Vol. SE-20, No. 8, August
1994.

[CKM 95]. Coen-Porisini, A., R.A. Kemmerer and D.
Mandrioli, “A Formal Framework for ASTRAL Inter-
level Proof Obligations”, Proceedings of the Fifth
European Software Engineering Conference,
Barcelona, Spain, September 1995.

[CSK 94] Coen-Porisini, A., P. San Pietro and R.
Kemmerer, "Formal Semantics Definition for
ASTRAL", Report no. TRCS 94-15, Department of
Computer Science, University of California, Santa
Barbara, California, September 1994.

[DK 94] Douglas, J., and R.A. Kemmerer, "Aslantest: A
Symbolic Execution Tool for Testing Aslan Formal
Specifications," Proceedings of the International
Symposium on Software Testing and Analysis,
Seattle, Washington, August 1994.

[FP 88] Faulk, S.R. and D.L. Parnas, "On
Synchronization in Hard Real-Time Systems,"
Communications of the ACM, Vol. 31, No. 3, March
1988.

[FM 94] Felder, M. and A. Morzenti, "Validating Real-
Time Systems by History Checking TRIO
Specifications", ACM Transactions on Software
Engineering and Methodologies, Vol. 3 No. 4 ,
October 1994.

[Ger 93] Gerhart, S.L., "The MCC Formal Methods
Transition Study: Technology Transfer for Complex
Information Technology and Processes", Proceedings
of the IFIP TC8 Working Conference on Diffusion,
Transfer and Implementation of Information
Technology, Pittsburgh, USA, October 1993.

[GMM 90] Ghezzi, C., D. Mandrioli, and A. Morzenti,
"TRIO: A Logic Language for Executable
Specifications of Real-Time Systems," Journal of
Systems and Software, June 1990.

[Gor 87] Gordon, M., "HOL: A Proof Generating
System for higher order logic", VLSI Specification,
Verification, and Synthesis, Kluver, 1987.

[GBG 90] Greene, K., M. Bouler, S. Gerhart, and D.
Russinoff, "SpecTra0.1 and SpecTra0.2:
Demonstration and Research Issues", Tech. Rep. STP-
EI-329-90, MCC Software Technology Program
(Videotape), October 1990.

[HLN 90]. Harel, D. et al., “STATEMATE: A Working
Environment for the Development of Complex
Reactive Systems”, IEEE Transactions on Software
Engineering, Vol. SE-16, No. 4, April 1990.

[HK 88] Harrison, L.J. and R.A. Kemmerer, "An
Interleaving Approach for the Symbolic Execution of
Ada Tasking Programs," Proceedings of the Third
International IEEE Conference on Ada Applications
and Environments, Medford, New Hampshire, May
1988.

[Kem 85] Kemmerer, R.A., "Testing Software
Specifications to Detect Design Errors," I E E E
Transactions on Software Engineering, Vol. SE-11,
No. 1, January 1985.

[KRM 93]. Kutty, G., Y.S. Ramakrishna, L.E. Moser,
L.K. Dillon and P.M. Melliar-Smith, “A Graphical
Interval Logic Toolset foro Verifying Concurrent
Systems”, Proceedings of the Conference on
Computer-Aided Verification, June/July 1993.

[MS 94] Morzenti, A., D., and P. San Pietro, "Object
Oriented Logic Specification of Time-Critical
Systems," ACM TOSEM, Vol. 3, No. 1, pp. 56-98,
January 1984.

[MMG 92] Morzenti, A., D. Mandrioli, and C. Ghezzi,
"A Model Parametric Real-Time Logic," A C M
Transactions on Programming Languages and
Systems, Vol. 14, No. 3, July 1992.

[WM 92] Wos, L., W. McCune, "The application of
automated reasoning to questions in mathematics and
logic", Annals of Mathematics and Artificial
Intelligence, Vol. 5, No. 2, pp. 321-370, May 1992

[Wir 77] Wirth, N., "Toward a Discipline of Real-Time
Programming," Communications of the ACM, Vol.
20, No. 8, August 1977.

[Zwi 89] Zwiers, J., Compositionality, Concurrency,
and Partial Correctness, LNCS 321, Springer Verlag,
Berlin, 1989.

