
Exploiting the Capabilities of Communications Co-processors

Klaus E. Schauser, Chris J. Scheiman, J. Mitchell Ferguson, and Paul Z. Kolano

Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106fschauser,chriss, ferguson,kolanog@cs.ucsb.edu

Abstract

Communications co-processors (CCPs) have become
commonplace in modern MPPs and networks of worksta-
tions. These co-processors provide dedicated hardware
support for fast communication. In this paper we study
how to exploit the capabilities of CCPs for executing user
level message handlers. We show, in the context of Active
Messages and Split-C, that we can move message handling
code to the co-processor thus freeing the main processor
for computational work. We address the important issues
that arise, such as synchronization, and the limited com-
putational power and flexibility of CCPs. We have imple-
mented co-processor versions of both Active Messages and
Split-C. These implementations, developed on the Meiko
CS-2, provide us with an excellent experimental platform
to evaluate the benefits of a communications co-processor
architecture.

1 Introduction

Many modern parallel architectures, including networks
of workstations, contain dedicated communications co-
processors (CCPs) to support fast communication. Exam-
ples of architectures with CCPs include the Intel Paragon
[PR94], Manna [BGSP94], Meiko CS-2 [HM93], Flash
[Kea94], Typhoon [RLW94], and cluster of workstations
connected via ATM networks [vEBBV95]. These co-
processors provide the protection, reliability, and protocol
handling needed for communication, thus freeing the main
processor for computational work.

In many forms of communication, when a message ar-
rives, there is some action that must be performed to in-
corporate the data into the on-going computation. For ex-
ample, this is the case with Active Messages, RPC, and
tagged send & receive [TM94]. A message may match
a tag, insert an item on a queue, increment a variable, or
store something in memory. Executing these handler func-
tions on the main processor incurs a high overhead, as the
main processor must either use expensive interrupts or poll
frequently for incoming messages. Since some communi-
cation co-processors can execute arbitrary code, it may be

desirable for these co-processors to perform the message
handling.

In this paper we study how to exploit the capabilities of
CCPs for executing user level message handlers. Executing
message handlers on the co-processor provides a number of
benefits [SS95, KNW95]. Since the co-processor is fully
dedicated to communication, it is likely to serve incoming
messages faster than the main processor. Furthermore, if
all messages are handled by the co-processor, there is no
need for the main processor to be interrupted or for polls to
be inserted into the computation. While the computational
overhead of the poll usually is not significant, the real cost
of polling occurs when a request message is not processed
promptly, causing the requester to wait. If messages are
received and processed by a co-processor, this delay can
prevented.

Executing message handlers on a communications co-
processor, however, raises a number of issues that must
be addressed. Frequently, CCPs are special purpose hard-
ware which are limited in computational power and flexi-
bility. This constrains the kinds of computations that can
be performed by the co-processor. For example, some co-
processors do not support floating point operations, or can
not run arbitrary user code. Another important issue is syn-
chronization between the co-processor and the main proces-
sor. Sometimes, code on the main processor must execute
atomically with respect to certain message handlers. When
not taking advantage of a co-processor, explicit polling on
the main processor provides an easy solution. When a co-
processor can execute message handlers independently of
the main processor, however, explicit synchronization is
required.

In this paper, we evaluate the handling of messages by
the co-processor in the context of Active Messages and
Split-C. Active Messages associate with each message a
handler function, which is executed on the receiving pro-
cessor upon arrival of the message [vECGS92]. In order
to evaluate our approach under large parallel applications,
we also implemented Split-C, a simple parallel extension
of the C programming language. Using Split-C gives us
access to a large set of parallel programs. The programs
serve as a useful benchmark set that allows us to evaluate
the absolute performance of the implementation based on



the CCP.
The structure of the remainder of the paper is as fol-

lows. Section 2 gives an overview of Active Messages and
Split-C. Section 3 presents the implementation strategy for
running the Split-C library on a co-processor architecture.
Section 4 presents in more detail our hardware platform,
the Meiko CS-2 architecture. Section 5 evaluates the per-
formance of our Split-C library implementation. Section 6
discusses related work. Finally, Section 7 summarizes our
experiences and concludes.

2 Active Messages and Split-C

Active Messages provide a universal communications
architecture which is frequently used by compiler and li-
brary writers [vECGS92]. Split-C is a C-based parallel lan-
guage which makes use of Active Messages. Our goal is to
execute much of the message handling on the co-processor
in order to free up the main processor.

2.1 Active Messages

Each Active Message has a handler function associated
with it which is executed on the destination processor when
the message arrives. Active Message handlers are intended
to be short functions which execute quickly and are not
allowed to suspend. Handlers are divided into two classes:
requests and replies. A processor can send a request mes-
sage to an arbitrary processor. When it arrives, the spec-
ified request handler is invoked. Request handlers may
answer by sending a single reply message. However, to
simplify deadlock considerations reply handlers are pro-
hibited from additional communication. Under the Active
Message model, messages travel from user space (the send
instruction) directly to user space (the message handler),
avoiding any form of buffer management and synchroniza-
tion usually encountered in traditional send & receive.

Although they are quite primitive, Active Messages have
become an important communication layer because of their
efficiency. The small overhead and low latency facilitates
building more complicated communication layers [TM94]
and makes it a desirable target for high-level language com-
pilers [CGSvE93, CDG+93]. Over the past several years
Active Messages have been implemented on many different
hardware platforms. Several of these architectures have a
communications co-processor, which is used to support re-
liable and protected communication. So far only the Meiko
CS-2 and the Intel Paragon have been used to run user level
message handlers on the co-processor [KNW95, SS95].

2.2 Split-C

Split-C is a simple parallel extension of the C program-
ming language [CDG+93]. Split-C follows the SPMD
model of computation: a single thread of computation is
started on each processor. Both the parallelism and data

layout is explicit and is specified by the programmer. Split-
C provides a global address space in the form of distributed
arrays and global pointers, and supports several efficient
split-phase operations (including bulk transfers) to access
remote data. Split-phase operations separate the initiation
of a memory operation (the request) from the response.
Split-phase operations in Split-C are put and store, for
transferring data to another location, and get, for retrieving
data from another location. (Put and get are acknowledged
transactions, while store is a one-way operation.)

The split-phase nature of Split-C requires that the ba-
sic memory operations (put, get, and store) keep track of
outstanding memory transactions. Split-C keeps track of
these outstanding data transfers with counters, using Active
Messages to transfer the data and increment or decrement
the counters. Every put or get request increments a counter
to indicate that an operation has begun but not yet com-
pleted. When the data has been successfully transferred,
the counter is decremented. The user can wait for all out-
standing gets and puts with the Split-C function sync(),
which waits for the counter to equal zero. Unlike the get
and put operations, a store operation is one-way and uses
two counters: one is incremented when data is sent, and
the other is incremented when data is received.

Since get, put, and store all work in a similar fashion,
we examine only the get in more detail. As shown in
Figure 1, a get operation consists of 3 steps: First, the
requesting processor (1a) sends the “get” request to the
remote processor and (1b) increments the counter tracking
outstanding requests. Next, the remote processor receives
the request message, (2a) reads the requested data, and (2b)
sends it back. Finally, the requesting processor receives the
reply, (3a) stores the data, and (3b) decrements the counter.

Proc

Memory
1b

3b

3a
Proc

Memory

2a
1a

2bValue

Cnter
Value

Figure 1: Steps required for a Split-C get operation.

Steps 2 and 3 correspond to Active Message handlers
(each processor servicing the request or reply message).
As described in the next section, we implement Split-C
by running the Active Message handlers directly on the
communications co-processor.

3 Implementation of Split-C on
Co-processor Architectures

This section shows how we implement Split-C on a co-
processor architecture. Using the co-processor to handle
messages has the advantage that the main processor on
the sending side only needs to initiate the communication
process, while the main processor on the receiving side can



proceed uninterrupted. The co-processors keep track of the
outstanding requests, send the requested data, and move the
incoming data into the specified memory locations.

For a co-processor implementation of Split-C, the steps
originally done by message handlers on the main processor
are now executed by the co-processor. For the get oper-
ation, as shown in Figure 2, the co-processor reads and
stores the data, as well as decrements a counter. The steps
are almost exactly the same as in Figure 1, except that
the co-processors on both nodes are utilized. In Step 1,
the message is sent to the receiving co-processor, and the
counter is incremented as before; in Step 2, the receiving
co-processor reads the data and sends the reply; and in Step
3, the requesting co-processor stores this data in memory
and decrements the counter. In most architectures, the co-
processor is also involved on the sending side, to ensure
protection. But this is transparent to the application, which
is just provided with a user-level communication interface.

Proc

CoProc

Memory
1b

3b

3a

Proc

CoProc

Memory

2a
1a

2bValue

Split
Cnter

Value

Figure 2: Steps required for a Split-C get operation on a co-
processor architecture.

There are several synchronization issues that must be ad-
dressed. For example, a problem arises if the co-processor
decrements the counter just as the main processor issues
another get request: the counter value could be corrupted.
We have to ensure mutually exclusive access if we allow
both the main and co-processor to update the same counter.
Implementing this with locks can be quite expensive. As
proposed by [KNW95], a more efficient solution is to split
the counter in two counters, using one counter for the main
processor increments and the other for the co-processor
decrements. This solves the synchronization problem. No
race condition can occur since each processor can only write
to one location, and can read the other. The sum of the two
counters produces the desired counter value. The counter
for the put operation is treated similarly. (The counter for
store is already split into sending and receiving counters in
the basic Split-C implementation.)

Another important synchronization issue, when execut-
ing code on the co-processor, involves atomic operations.
Split-C allows the user to specify message handler functions
which are atomic with respect to other message handlers as
well as the main computation. (These atomic functions are
subject to the same constraints as Active Messages: they
cannot block and can only send a single reply.) These
functions are intended only for very simple operations;
for example, enqueuing or dequeuing an object. If the
co-processor is allowed to execute these atomic functions,
some mechanism has to be applied to ensure mutually ex-
clusive execution of the function. The simplest solution is

to allow only the main processor to execute such functions.
The main processor will have to poll for atomic functions
it must execute.

A final issue is that frequently a communications co-
processor only provides limited functionality and cannot
run arbitrary message handlers. For instance, many co-
processors cannot execute floating point operations. Ad-
ditionally, most communication co-processors have less
design effort invested compared to the commercial main
processors, thus are not as fast. It can be more efficient to
run resource intensive tasks on the main processor instead.
Not only will the code run faster, but it will not burden the
communications co-processor and prevent new messages
from being processed.

In summary, communication in Split-C consists of a
number of split-phase memory primitives, plus a collection
of less frequently used operations such as atomic functions.
To keep track of outstanding memory transfers,Split-C uses
counters. The memory transfer and counter operations can
easily be performed by the co-processor, and, if split coun-
ters are used, no synchronization is needed with the main
processor. Atomic operations, on the other hand, have
stringent synchronization requirements and may therefore
execute more efficiently on the main processor. In the
case of the Meiko CS-2, the co-processor provides fea-
tures which we can exploit to further optimize this basic
implementation. This is described in the next two sections.

4 The Meiko CS-2 Architecture

The Meiko CS-2 consists of Sparc based nodes con-
nected via a fat tree communication network [HM93]. It
runs a slightly enhanced version of the Solaris 2.3 oper-
ating system on every node, and thus closely resembles a
cluster of workstations connected by a fast network. Each
node in a CS-2 contains a 40 MHz SuperSparc processor
with 1 MB external cache and 32 MB of main memory.
The SuperSparc is a three-way superscalar processor, and
achieves a peak rate of 120 MIPS.

Each node in a CS-2 contains a special CCP, the Elan
processor, which connects the node to the fat tree. The
CCP enables direct user-level communication. For every
message, the co-processor ensures protection by a series of
translations and checks at both the sending and receiving
side. This achieves protected user-level communication
without the intervention of the operating system for every
message.

The Elan co-processor consists of a number of func-
tional units, which include the DMA engine (for sending
data), the thread engine (for running arbitrary code, in-
cluding user code), and the input engines (for receiving
messages). The DMA engine performs DMA transfers of
arbitrary size from a virtual address on the source node to
a virtual address on the destination node. The thread en-
gine implements a Sparc-like instruction set enhanced with
special instructions for opening and closing connections,
sending network transactions, and transferring control to



other functional units. Since the Elan co-processor con-
tains its own TLB, it can access virtual memory and run
user-level code.

Meiko has a unique synchronization mechanism called
an event. When an event is triggered, it can, among other
things, cause a co-processor thread to resume execution.
They allow for synchronization since the main processor
and most of the Elan engines can setup and trigger events.
A thread waiting on an event uses no resources except
memory, so there is no penalty for having many suspended
threads.

5 Performance of the Co-processor Imple-
mentation

We now give the details and discuss the performance
measurements of our co-processor implementations for
Active Messages and Split-C. First, we examine the raw
communication performance of the Meiko CS-2 and com-
pare our co-processor implementation of Active Messages
to the version that runs handlers on the main processor.
Next, we discuss our optimized implementation of Split-C,
which specializes the message handlers for execution on
the co-processor. Finally, we examine applications written
in Split-C.

5.1 Performance of Active Messages

In this section we compare the performance of two im-
plementations of Active Messages with the raw perfor-
mance measurements of a basic DMA transfer. The first
implementation uses the CCP only on the sending side. The
second implementation goes a step further and also uses the
co-processor on the receiving side to execute the message
handlers.

The one-way latency of a DMA transfer establishes the
best performance an ideal implementation could achieve.
We compute this latency (9.5 �s as shown in Table 1) by
halving the round-trip latency involved in transferring a
flag between two processors. This roundtrip operation is
performed repeatedly so that overhead incurred by starting
and stopping the timer can be ignored.

Sending an Active Message involves the following steps:
(1) The sending processor assembles the message in the
outgoing buffer and sets a flag to indicate that the message is
ready. (2) The sending CCP polls on this flag. Once it sees
that the flag is set, it checks whether the receiving buffer
on the remote processor is empty, and if so deposits the
message into the receiving buffer. (3) The main processor
on the receiving node checks this buffer on a poll; when it
encounters a message, it dispatches to the message handler
and frees the buffer. This scheme, which is described in
more detail in [SSFK95], essentially implements a remote
queue [BCL+95] of depth one.

In the second implementation of Active Messages, the
CCP is used both on the sending and the receiving side.
In this implementation, the main processor is no longer

involved in the reception of messages. When a message ar-
rives, it triggers a thread (using Meiko’s event mechanism).
This thread calls the appropriate Active Message handler.2

As shown in Table 1, the one way and roundtrip laten-
cies are more than twice as large as the main processor
implementation. This is because the co-processor is an or-
der of magnitude slower (runs at only 3 MIPS versus up to
120 MIPS on the main processor) and has only an 8 word
instruction cache, no data cache, and no register windows.

Implementation one-way roundtrip
Basic DMA 9.5 �s 19 �s
AM main processor 12.5 �s 23 �s
AM co-processor 30 �s 52 �s

Table 1: Comparison of DMA and Active Message implementa-
tions for a simple ping-pong program.

Our implementation involves a dispatch thread on the re-
ceiving co-processor, which takes incoming messages and
calls the proper handler function. If a program or library
uses only a few message handlers, one optimization is to
avoid this dispatch thread and directly invoke the proper
handler function. This approach is ideal for the Split-
C library, which only contains a few important message
handlers. This forms the basis for the optimized Split-C
implementation described next.

5.2 Performance of Split-C Primitives

As we saw in the previous section, a direct implemen-
tation of the Split-C primitives using Active Messages on
the co-processor is about twice as slow as the main pro-
cessor implementation. To improve the Split-C primitives,
we exploit the fact that Split-C requires only a small num-
ber of Active Message handlers. While the generic Active
Message implementation requires a dispatch thread to call
the appropriate message handler, the optimized version can
avoid this dispatch and directly invoke the appropriate han-
dler. Furthermore, many Split-C operations only require
the functionality that is already built-in to the Elan hard-
ware. We can use special communication primitives such
as DMAs and remote atomic adds to avoid running thread
code on the receiver.

Before addressing the optimizations, we present the tim-
ings for basic Split-C primitives. Figure 3 gives an overview
of the implementation results for the get, put, and store

2Our implementation is optimized by usingP�1 threads per processor
for the sending and receiving of messages. Each thread is responsible for
receiving messages from a single remote processor, and each is triggered
by its own event. Note that multiple events/threads only take up space;
threads do not run unless triggered by an event. This scheme assures
that two sending processors do not set the same event at the same time.
Furthermore, in our implementation, a processor waits for an acknowledg-
ment before sending a second message to the same destination; therefore,
no buffer management is needed.



operations. It shows the latencies for the optimized co-
processor implementation and compares them to the ver-
sions of Split-C that run handler functions on the main
processor and co-processor. We see that get and store are
still much slower in the co-processor library, compared to
the main processor version: 34 vs. 24�s for get, and 22 vs.
13�s for store. However, the times are much better than
those under the Active Message co-processor implementa-
tion (54�s for get and 30�s for store). Furthermore, put
and bulk store are actually faster under the optimized co-
processor implementation: 22 vs. 24�s for put, and 23 vs.
27�s for bulk store. This is because we were able to spe-
cialize these functions in the co-processor implementation,
while the main processor implementation relies on generic
Active Messages. The co-processor implementation also
out-performs the main processor implementation for long
messages:1 it achieves 38 MB/s compared to 32 MB/s.

0

1 0

2 0

3 0

4 0

5 0

6 0

p
u

t

g
e

t

st
o

re

bu
lk

 s
to

re

bu
lk

 g
et

us

Main AM

Co-proc AM

Co-proc opt.

Figure 3: Latencies for basic Split-C operations, for three ver-
sions of Split-C. Main AM is the version of Split-C which executes
the Active Message handlers on the main processor; co-proc AM
is the version running Active Messages on the co-processor; co-
proc optimized is the version optimized for the co-processor. (The
bulk store is for 32 bytes.)

We now discuss the optimization of the three Split-C
operations— put, get, and store— in more detail. The put
operation increments a counter, transfers data to a remote
processor, then decrements the counter when the transfer
is complete. The optimized put operation is faster because
it executes no code on the receiver; we can use a highly
optimized DMA to transfer the data and avoid any sort of
Active Message altogether. On the Meiko, the completion
of a DMA can trigger a thread on the sending co-processor,
and this thread can decrement the counter.

1This occurs because the main processor version trades off bandwidth
for latency: The co-processor continuously schedules a thread which
checks whether the main processor wants to send a message. While
this reduces the latency, it takes resources from the co-processor and thus
reduces the bandwidth for DMAs used in bulk transfers. The co-processor
implementation, on the other hand, uses the event mechanism so that none
of its many threads require resources until needed. Consequently, these
threads do not affect the bandwidth.

The get operation increments a counter, requests data
from a remote processor, then decrements a counter when
the data has arrived. The get operation is also optimized
using DMAs. The requesting processor first sends a DMA
descriptor to the remote processor (using a second DMA),
then triggers the DMA descriptor to run on the remote pro-
cessor. This DMA transfers the required data and triggers
thread code on the requesting co-processor which decre-
ments the counter.

The store operation increments a local counter, transfers
data to a remote processor, and increments a second counter
on the remote processor. Unlike get and put, the store
involves a computation on the remote processor. The Meiko
supports remote atomic adds. Thus, the sending processor
sends the data, then performs an atomic add of the counter
on the receiving co-processor. This avoids the high cost of
triggering and running thread code.

5.3 Performance of Split-C Applications

In this section we compare the performance of full Split-
C applications under the two implementations. As the
measurements in the previous section show, gets and stores
using the co-processor are about 30–40% slower than those
using the main processor. Nevertheless, executing mes-
sage handlers on the slower co-processor can be beneficial,
because the communications co-processor provides more
responsive service for requests. Furthermore, because the
main processor spends less time servicing messages, it has
more time for the computation and can overlap communi-
cation and computation to a larger degree. To evaluate this
scheme, we compare the performance of the two Split-C
implementations for a number of benchmark programs.

Table 2 lists our benchmark programs, along with the
corresponding running times for both versions of Split-C.
All programs were run on a 16 node Meiko CS-2 partition.
Bitonic is a bitonic sort program, which uses bulk store
operations for communication. Cannon codes two versions
of Cannon’s matrix multiply algorithm (which vary on data
placement); both use bulk store operations. FFT performs
a fast Fourier transform computation involving 2 computa-
tion phases separated by a cyclic-to-blocked remap phase
(done with store operations). FFTB is the same FFT pro-
gram, except communication uses bulk stores. MM codes
two versions of a blocked matrix multiply algorithm (which
differ with respect to data placement); both use bulk gets
for data movement. P-ray is a parallel ray-tracer program,
which uses bulk put operations. Radix is a radix sort algo-
rithm which uses store operations. Radixb is the same radix
sort algorithm, except it uses bulk store operations. Sam-
ple is a sample sort program which uses get, put, and bulk
get operations. Sampleb is the sample sort algorithm, but
optimized with bulk store operations. Shell is the shell sort
algorithm using bulk reads. Wator is a simulation program
that models fish moving in a current; it uses a number of op-
erations, including reads. For more information regarding
our benchmarks, see [SSFK95].

In examining Table 2, we find that many of the bench-



Program Description Time (in sec)
Main proc Co-proc

bitonic Bitonic sort 17.0 16.0
cannon Cannon matrix multiply

global blocked algorithm 13.9 12.4
local blocked algorithm 8.5 8.5

fft FFT using small transfers
phase 1 (computation) 4.0 3.7
remap (communication) 12.5 8.8
phase 2 (computation) 1.0 0.9

fftb FFT using bulk transfers
phase 1 (computation) 9.2 8.5
remap (communication) 2.4 2.2
phase 2 (computation) 2.0 1.8

mm matrix multiply
global blocked algorithm 29.0 23.2
local blocked algorithm 11.2 12.4

p-ray Ray-tracer 37.5 38.0
radix Radix sort 35.2 55.4
radixb Radix sort, bulk transfers 15.3 14.4
sample Sample sort 20.9 25.3
sampleb Sample sort, bulk transfers 7.40 7.4
shell Shell sort 6.9 6.5
wator N-body simulation 139 34

Table 2: Run times for various Split-C programs. Run times on
the left correspond to the main processor version of Split-C, while
times on the right correspond to the version which exploits the
co-processor. Measurements are for 16 processors on a Meiko
CS-2.

mark programs generate similar timings for both the co-
processor and main processor Split-C libraries. This occurs
for two reasons: First, much of the communication is done
with bulk operations, and there is only a 20% difference
in bandwidth between the two Split-C implementations.
Second, most of these programs do not overlap commu-
nication and computation to a great degree. Instead, they
run in computation phases, separated by barriers. These
programs do not provide the co-processor implementation
with an opportunity to exploit its ability to compute and
handle communication at the same time. There are some
programs that show a significant variation in run times;
these are mm, radix, sample, and wator. Radix and sam-
ple run slower with the co-processor library because of
the raw performance of the communication operations (as
shown in Figure 3). Radix uses store operations which are
much faster in the main processor library (13 vs. 22 �s),
while sample uses on a number of operations, including
gets, which are faster in the main processor library. The
global blocked matrix multiply program runs faster in the
co-processor version for two reasons: First, the main pro-
cessor implementation does not queue more than one get
request at a time, forcing the main processor to wait for the
previous one to complete (this accounts for roughly half

of the difference in run times). Second, mm uses bulk get
operations, which have a slightly higher bandwidth in the
co-processor library.

The final program with a significant difference in run
times is wator. In this program each processor has a
read/compute loop that reads a data point and then com-
putes on that data. Because the main processor version
only polls when it performs communication, any requests
it receives while it is computing experience a long delay.
(To avoid at least some of this delay, the programmer would
have to add polls to the compute routine.) The co-processor
implementation, in contrast, can process requests no mat-
ter what the main processor is doing. This leads to sub-
stantially smaller average wait times: We measured 25-33�s for read requests for the wator program under the co-
processor implementation, compared to 600-800 �s under
the main processor implementation.

6 Related Work

In exploiting the co-processor for message handling,
our study focused on Active Messages and Split-C. Ac-
tive Messages have been ported to a wide variety of ma-
chines, including the Ncube/2, CM-5 [vECGS92], the
Paragon [LC95], Meiko CS-2 [SS95], Alewife [BCL+95],
IBM SP-2 [CGvE95], a cluster of HP workstations con-
nected by FDDI [Mar94], and a cluster of SparcStations
connected by ATM [vEBBV95]. These last few implemen-
tations make use of a co-processor. In most of these imple-
mentations, the co-processor is used to implement the Re-
mote Queue abstraction [BCL+95]. The main processors
can enqueue an outgoing message or dequeue an incoming
message at user-level, while the co-processor manages the
queue and protocol handling. The FDDI implementation
uses a Medusa interface card,which enqueues and dequeues
data, but is not programmable. U-NET, a fast user-level
communication layer on ATM networks, is implemented
using FORE ATM cards, containing i960 processors that
run specialized firmware. Similarly, the Myrinet LANai
co-processor is used for both Active Messages [MLMC95]
and Illinois Fast Messages [PLC95]. An interesting Active
Message implementation from our perspective is a version
for the Paragon[LC95], which uses a standard Intel i860 as
a CCP. They, too, implement Active Messages and Split-C
in order to test the use of the CCP.

Split-C shares its origin with Active Messages, and most
implementations of the language are based on them. Split-
C has been ported to a number of machines, including
the CM-5, Paragon, SP-1, SP-2, and networks of worksta-
tions. An interesting implementation is a recent prototype
version of Split-C implemented on the Paragon, using the
co-processor for message handling [KNW95]. By using
the co-processor on the receiving side to handle requests,
they provide a speed up of 25% for read/write operations.



7 Conclusions

In this paper we have studied how to exploit the capabil-
ities of communications co-processors present in modern
parallel architectures. We have studied this in the context of
Active Messages and Split-C, and have implemented new
versions of these libraries which execute the message han-
dlers on the co-processor of the Meiko CS-2. We identified
and solved the synchronization issues which arise when
running message handlers on the co-processor in parallel
with the code on the main processor. Ours is the first full
implementation of Active Messages and Split-C running on
a co-processor.

As our experimental results show, the latencies of Active
Messages when executing handlers on the co-processor in-
crease about two-fold. The reason is that the co-processor is
is much slower than the main microprocessor. On the other
hand, the co-processor has important specialized function-
ality which we exploit to optimize the split-phase remote
memory operations of Split-C. Under this optimized Split-
C implementation, the latencies are reduced: put operations
are as fast as the main processor implementation, though
get and store operations are still slower. However, the real
benefit of the new implementation is that the main proces-
sor does not need to poll or process interrupts to handle
messages, since this is done by the co-processor. This frees
the main processor for computation and allows it to overlap
communication and computation to a larger degree. Since
the co-processor is not doing any other computation, it can
handle messages more responsively. This benefit exhibits
itself in some applications, such as the benchmark pro-
gram wator, which achieves a factor of three performance
improvement.

This work is applicable to other modern architectures
which have a communications co-processor, such as the
Paragon, T3D, and future machines. Many of these archi-
tectures will, like the Meiko, contain a custom designed
chip that may be slower than its main processor counter-
part. However, as we have shown, this does not preclude its
usefulness for handling messages. Even if the co-processor
can only execute kernel code, it is possible to support a fixed
set of handlers required by a communication library.

References

[BCL+95] E. A. Brewer, F. T. Chong, L. T. Liu, S. D. Sharma,
and J. Kubiatowicz. Remote Queues: Exposing
Message Queues for Optimization and Atomicity.
In 7th Annual Symposium on Parallel Algorithms
and Architectures, July 1995.

[BGSP94] U. Bruening, W. K. Giloi, and W. Schroeder-
Preikschat. Latency Hiding in Message-Passing Ar-
chitectures. In Eighth International Parallel Pro-
cessing Symposium, April 1994.

[CDG+93] D. E. Culler, A. Dusseau, S. C. Golstein, A. Krish-
namurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel Programming in Split-C. In Proc. of Super-
computing, November 1993.

[CGSvE93] D. E. Culler, S. C. Goldstein, K. E. Schauser, and
T. von Eicken. TAM — A Compiler Controlled
Threaded Abstract Machine. Journal of Parallel
and Distributed Computing, 18, July 1993.

[CGvE95] C.-C. Chang, C. Grzegorz, and T. von Eicken. Per-
formance of Active Messages on the SP-2. Cornell
University, May 1995.

[HM93] M. Homewood and M. McLaren. Meiko CS-2 In-
terconnect Elan-Elite Design. In Proc. of Hot Inter-
connects, August 1993.

[Kea94] J. Kuskin and et. al. The Stanford FLASH Multipro-
cessor. In Proc. of the 21st International Symposium
on Computer Architecture, April 1994.

[KNW95] A. Krishnamurthy, J. Neefe, and R. Wang. Towards
Designing and Evaluating Network Interface Sup-
port: A Case Study. UC Berkeley, May 1995.

[LC95] L. T. Liu and D. E. Culler. Evaluation of the Intel
Paragon on Active Message Communication. In
Proceedings of Intel Supercomputer Users Group
Conference, April 1995.

[Mar94] R. P. Martin. HPAM: An Active Message Layer
for a Network of HP Workstations. In Proc. of Hot
Interconnects II, August 1994.

[MLMC95] R. Martin, L. T. Liu, V. Makhija, and D. E.
Culler. Lanai Active Messages. Online
at http://now.cs.berkeley.edu/AM/lam release.html,
September 1995.

[PLC95] S. Pakin, M. Lauria, and A. Chien. High Perfor-
mance Messaging on Workstations: Illinois Fast
Messages (FM) for Myrinet. In Supercomputing,
December 1995.

[PR94] P. Pierce and G. Regnier. The Paragon implementa-
tion of the NX message passing interface. In Pro-
ceedings of the Scalable High-Performance Com-
puting Conference, May 1994.

[RLW94] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tem-
pest and Typhoon: User-Level Shared Memory. In
Proceedings the 21st Annual International Sympo-
sium on Computer Architecture, April 1994.

[SS95] K. E. Schauser and C. J. Scheiman. Experience
with Active Messages on the Meiko CS-2. In 9th
International Parallel Processing Symposium, April
1995.

[SSFK95] K. Schauser, C. Scheiman, J. Ferguson, and
P. Kolano. Exploiting the Capabilities of Communi-
cations Co-processors. Technical report, UC Santa
Barbara, December 1995.

[TM94] L. W. Tucker and A. Mainwaring. CMMD: Active
Messages on the CM-5. Parallel Computing, 20(4),
April 1994.

[vEBBV95] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U-Net: A User-Level Network Interface for Parallel
and Distributed Computing. In Proc. Symposium on
Operating Systems Principles, 1995.

[vECGS92] T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser. Active Messages: a Mechanism
for Integrated Communication and Computation. In
Proc. of the 19th International Symposium on Com-
puter Architecture, May 1992.


