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Abstract

Ballast is a tool for balancing user load across SSH
servers based on various criteria such as CPU load and
system availability. It includes a load balancing client, a
lightweight data server, and a data collection agent. Ballast
is invoked as part of the SSH login process, so has access
to the user name while making balancing decisions, which
is not available in traditional load balancing approaches.
This gives Ballast the unique ability to perform user-specific
load balancing. This paper presents the Ballast architecture
and examines the benefits of involving user-specific criteria
in the balancing process. Two approaches for utilizing user
information based on prediction and dynamic load metrics
are analyzed using trace-based simulation and are found to
have significant benefits when combined.

1. Introduction

Computational systems have limited resources that must
be shared amongst the users operating on them. These lim-
its exist for processors, memory, storage, I/O bandwidth,
network bandwidth, among others, and are reached differ-
ently depending on the activity of users operating on the
system. Since even operating near these limits affects the
usability of a system, sites with high utilization typically
spread users over a number of systems with similar capabil-
ities such that each operates well within its absolute limits.

In such configurations, load is distributed across systems
by some form of load balancer that selects a system for each
request using a predefined balancing policy. Load balancing
works well for protocols such as HTTP that generate uni-
form load across transient connections, but can break down
when used with more persistent connections that have non-
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uniform load patterns over time and between requests. SSH
is the prime example of this type of protocol. SSH sessions
may last from seconds to months or more and at any time
while active may consume from almost no resources up to
the entire capacity of the system. Such widely varying be-
havior may easily result in imbalanced utilization over time
where one system may become fully utilized while another
sits idle.

This paper presents Ballast, an approach to Balancing
Load Across Systems that was specifically designed for
SSH. Unlike traditional general-purpose balancers that op-
erate within the standard network stack, Ballast operates in
conjunction with SSH client invocation so has access to the
user name when making balancing decisions. This allows
Ballast to support more advanced selection strategies that
can be tailored to each individual user. In particular, histor-
ical user behavior can be utilized to predict the duration and
resource consumption of each SSH session as well as to de-
termine the load metrics that are most important to the given
user. This information allows Ballast to provide significant
improvements in balancing performance.

This paper is organized as follows. Section 2 discusses
related work. Section 3 presents the Ballast architecture.
Section 4 discusses the simulation methodology. Section
5 describes user-specific load balancing. Finally, section 6
presents conclusions and future work.

2. Related Work

The two most common approaches for load balancing
are based on in-line network interception and DNS manip-
ulation. In-line network load balancers such as the F5 Net-
works BIG-IP [4] utilize IP addresses as aliases and bal-
ance load by routing traffic destined for each IP alias to dif-
ferent destinations depending on load criteria and informa-
tion within the intercepted packets. Layer 7 devices can
inspect protocol traffic to determine protocol-specific de-
tails such as user names to make better balancing decisions.
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This inspection is only feasible for unencrypted protocols,
however, so user names cannot be extracted from encrypted
protocols like SSH. DNS manipulation balancers such as
the Cisco Systems Global Site Selector [1] dynamically ad-
just the IP addresses returned for host name aliases based
on criteria such as availability and load. Unlike in-line
balancers, DNS load balancers cannot perform application-
specific load balancing since the only information they re-
ceive about any protocol is the host name.

Resource selection frameworks for grid computing such
as Surfer [7] and Condor’s Matchmaker [9] provide selec-
tion capabilities that are, in essence, a more generalized
form of traditional load balancing. Whereas traditional load
balancers select hosts based on the single criteria of load,
these frameworks select resources based not just on load,
but also on additional criteria such as CPU architecture and
operating system type to maximize the suitability of re-
sources to user applications. Smith [11] provides a service
that may be integrated into these frameworks to minimize
queue wait times by predicting the execution times of cur-
rently running tasks using historical application behavior.

Devarakonda et al. [2] show how the CPU time, file I/O,
and memory usage of a process can be predicted based on
historical behavior. When the pool of balanced resources is
heterogeneous, however, traces of application behavior on
one system may not be applicable to another due to varying
performance characteristics. Iverson et al. [6] show how
benchmark data collected on different system types can be
used to adjust predictions of task execution times, allowing
task observations to be shared across all systems.

Harchol-Balter et al. [5] utilize predictions of process
lifetimes with preemptive process migration to significantly
improve CPU load balancing over selections made at the
time a process is created. Unfortunately, SSH processes are
not easily migrated to different hosts without breaking the
connection. Wu et al. [14], however, describe a modifica-
tion that can be made to OpenSSH servers to migrate SSH
sessions from a failed server to a recovery server. While
this work was geared toward reliability, it may be suitable
for session migration as well to take advantage of preemp-
tive migration. Instead of migrating processes, Werstein et
al. [13] suggest dynamically balancing child processes as
they are created. While this approach is directly applicable
to SSH session balancing, it has the potential to break ap-
plications that do not expect child processes to be executed
on a different system than the parent.

An alternative to predicting load based on application
performance or user behavior is predicting the future load
of a system strictly from its load history. Dinda et al. [3]
evaluate linear models for predicting future load from past
load, but only predict 30 seconds into the future, which is
not long enough for SSH session balancing. Yang et al. [15]
provide an approach for predicting load further into the fu-

ture based on tendencies of historical load data.

Load balancing strategies may be evaluated in differ-
ent fashions. Zhou [16] simulates different strategies us-
ing CPU and I/O traces obtained from production systems.
This is very similar to the approach discussed in Section 4.
The other standard evaluation strategy is against artificially-
generated probabilistic loads such those demonstrated by
Livny et al. [8]. Trace-driven loads offer simulation under
more realistic conditions, but may not cover all scenarios
appropriately, while artificial loads may test more scenar-
ios, but many of those scenarios may not occur in practice.

3. Architecture

Ballast is a framework that was specifically designed for
SSH load balancing by taking advantage of the aliasing and
proxying capabilities available in most SSH clients. Within
a traditional SSH bastion architecture [10], where internal
resources can only be accessed from the outside via a hard-
ened bastion system, Ballast is completely transparent to
users and does not require any external modifications. Bas-
tions and internal hosts must have the Ballast client and a
pipe-based TCP relay utility such as netcat installed, which
can be easily managed across internal hosts by configura-
tion management tools.

Figure 1 shows the architecture of Ballast, which con-
sists of a Ballast agent on each balanced host, a Ballast
server on one or more data servers, and a Ballast client on
each bastion and internal host from which the user might ac-
cess balanced hosts. The Ballast agent periodically collects
system load information and sends it to the Ballast server.
The server aggregates the load data received from all agents
and stores it in a suitable form for making balancing deci-
sions. When the user invokes SSH to a host alias desig-
nated for balancing, SSH triggers the Ballast client, which
contacts the server to resolve balancing aliases to actual bal-
anced host names. The server consults its data and returns
one or more hosts, one of which the client connects to via
netcat (or equivalent), after which the login proceeds nor-
mally. The following sections discuss these components in
more detail.

3.1. Ballast Agent

The Ballast agent runs on each balanced system and peri-
odically collects various system and process measurements
from the linux process file system. System measurements
include CPU load, physical and virtual memory usage, I/O
statistics, network statistics, and uptime. Process measure-
ments include, among others, user name, process name,
process ID, parent process ID, start time, accumulated CPU
time, resident set size, and virtual memory size. Load data
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Figure 1. Ballast architecture

is sent back to the Ballast server via a TCP connection,
where it is used to make balancing decisions.

A periodic push of data to the server was used in favor of
an on-demand pull from all agents at the time of balancing
for a number of reasons. A push-based model yields better
response time as the server already has access to the data
when making balancing decisions so does not have to poll
all agents while possibly waiting for timeouts. This benefit
becomes more significant as the number of balanced hosts
increases. Pushing also scales better as the rate of balancing
requests increases since the data update rate is fixed.

Pushing has some disadvantages compared to an on-
demand pull. First, load data will be slightly stale at the time
balancing decisions are made. Ballast uses a default update
rate of once a minute, meaning decisions will be made on
data that is an average of 30 seconds old. It has been shown
[3, 15], however, that system load within this timeframe is
predictable with reasonable accuracy, hence stale data need
not actually be stale. The second disadvantage is that load
data must be continuously collected even when the balancer
is not being used. The agent consumes only 0.04 CPU sec-
onds per invocation, however, hence adds only fractions of a
percent to CPU load. The continuous collection also allows
user profiles to be accurately updated for use in user-specific
balancing as will be described in Section 5.

3.2. Ballast Server

The Ballast server is responsible for accepting balancing
requests from clients and returning the most suitable hosts
for the given alias and user based on a chosen load balanc-
ing strategy applied to the data collected by agents. Bal-
ancing requests are of the form “alias uid”, which together
with client host IP address from the connection details, al-
low the server to balance on any combination of balancing
alias, invoking user, and invoking host.

The server utilizes data received from agents to update
current system loads and to track cumulative averages of
session and process duration, CPU load, memory usage, etc.
per user as well as the current processes active on each sys-
tem for use within user-specific strategies, discussed in Sec-

tion 5. To facilitate high availability, each agent sends data
only to the first available server, with servers synchronizing
consolidated agent data periodically with peers. This sup-
ports both IP takeover as well as connection retry models.

The server is implemented in Perl with balancing strate-
gies being functions that are given the alias, uid, and in-
voking host as parameters. The basic strategy template is
to iterate over all available hosts for a particular alias and
compute the user-specific load metric for each based on the
load data stored in the server’s hash tables. The hosts with
the lowest values are then returned back to the client.

3.3. Ballast Client

Ballast is an SSH-specific solution that relies on the
aliasing and proxying features available in most SSH
clients. To simplify the discussion, the dominant client im-
plementation, OpenSSH, will be assumed in the remainder.
Aliasing (using the ssh_config “Host” directive) allows host
names to be specified on the SSH command line that need
not resolve to IP addresses. Proxying (using the ssh_config
“ProxyCommand” directive) allows a specific command to
be executed to form the connection with the target host.

In Ballast, aliasing is used to specify load balancing
aliases together with proxying that redirects connections
originally destined for balancing aliases to the Ballast client.
Before connecting to an actual host, the client connects to
the Ballast server to obtain the most suitable set of actual
hosts for the given alias and then connects to one on the
SSH port using netcat (or equivalent). The necessary SSH
client configuration can be specified in a global location by
the administrator, allowing Ballast to be completely trans-
parent to users.

Because the Ballast client is directly (though transpar-
ently) invoked by users, the user for which the balancing
decision is being made is known at the time of invocation.
This information is forwarded to the Ballast server, which
allows it to make user-specific decisions that are not pos-
sible with other load balancing approaches. The benefit
achievable with this additional information is the topic for
the remainder of the paper.
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4. Simulation Methodology

To evaluate different balancing strategies across a vary-
ing number of hosts, trace-driven simulation [16] was used
with load data collected from eight computational front-
ends of the Pleiades system at NASA Ames Research Cen-
ter, which was recently ranked as the sixth fastest computer
system in the world [12]. Ballast is currently utilized for
distributing users across the Pleiades front-ends. 897,823
samples were taken at one minute intervals over a three
month period with each sample corresponding to the load
data normally collected by Ballast agents.

4.1. Simulation

After the data was collected, SSH sessions and related
child processes were extracted from the last two months of
the process data. At each sample time, a record was created
that indicated the CPU time and total memory usage of each
process within the SSH session at that moment. The result-
ing session history contained 19,212,588 samples of 27,300
SSH sessions over 439 users observed during the collection
period. This session history was then used as the basis for a
simulator that produces system load measurements at each
time in the collection period for a given load balancing strat-
egy and number of hosts. The simulator works by traversing
the session history chronologically. Whenever a new SSH
session is observed in the history, the simulator chooses a
host based on the balancing strategy. Load measurements
are computed at each point based on the difference in the
processes and the CPU/memory metrics between samples.

Figure 2 shows the actual CPU time per minute observed
during the original collection period. Figure 3 show the
simulated CPU time per minute using the original system
selection and original number of hosts. As can be seen,
the curves for the actual load and simulated load have sim-
ilar shapes indicating that the simulator generates reason-
able approximations of actual behavior. Some variation is
expected due to activity on the systems that could not be
directly associated with any SSH session, hence not simu-
lated, or activity that could not be properly measured using
an interval of one minute.

4.2. User Profiling

To facilitate the specification of user-specific balancing
strategies, profiles of typical user behavior were constructed
based on the first month of the three month sample period.
The sample data during this period contained 8,649,828
samples of 10,041 SSH sessions over 310 users.

Table 1 shows a statistical summary of the number of
sessions and averages of CPU time, total memory, and du-
ration observed across all users over the profiling period.
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Figure 3. Simulated system load

Of particular note are the mean and max columns, which
represent the resources consumed by the typical and heavi-
est users in each category. As can be seen, there is a wide
variation between the two. In particular, the average CPU
time and average total memory differ by almost two orders
of magnitude. In Section 35, it will be shown how the differ-
entiation of users of different types can be used to provide
better balancing for each.

S. User-Specific Load Balancing

Unlike traditional load balancers, Ballast has the ability
to adjust its balancing strategy based on the invoking user.
A primary motivation of this research was to determine if a
balancer that has access to this additional information can
distribute load better than one that does not.

5.1. Predictive Strategies

As part of this assessment, an additional goal was to de-
termine if strategies employing predictive balancing based
on historical user behavior had measurable benefit. To mea-
sure effectiveness, four standard load balancing strategies,
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Metric \\ Stat H Mean ‘ Median ‘ Std. Dev. ‘ Min. ‘ Max. ‘
Avg. CPU time 8.97 m 9.12s 44.1m 0.00 s 8.12h
Avg. tot. mem. (GB) 1.26 0.18 4.65 0.01 66.6
Avg. duration 52.5h 6.52h 5.07d 1.00s | 35.4d
Sessions 32 11 132 1 2036

Table 1. User statistics during profiling period

two predictive strategies, and two user-specific predictive
strategies were run through the simulator with a varying
number of hosts against load measures of CPU time, total
memory usage, and a composite metric of the product of the
two. The standard strategies evaluated included:

e Random - Choose the system at random.
e Round robin - Choose systems sequentially.

e Least users - Choose the system with the lowest num-
ber of users.

e Least load - Choose the system with lowest load.
The predictive strategies were:

e Predictive - Choose the system with the lowest sum of
the average load per sample interval of the users cur-
rently on each system (the predicted load).

e Predictive least load - Choose the system with the low-
est sum of the actual and predicted loads.

Finally, the user-specific predictive strategies were:

e Predictive average overlap - Choose the system with
the lowest sum of the actual and predicted load with
each user’s predicted contribution reduced in propor-
tion to the ratio of the invoking user’s average session
duration to that of their own (the predicted average
overlap load). No reduction is made for users with
an average session duration greater than the invoking
user’s. The idea of this strategy is that the invoking
user will be affected less by the future activity of an-
other user if they typically stay logged on for longer.

e Predictive overlap - Choose the system with the lowest
sum of the actual and predicted average overlap load,
but with the predicted contribution reduced even fur-
ther by using the average session duration minus the
already elapsed session duration for each user (the pre-
dicted overlap load). The predicted contribution of
users who have been on the system longer than their
average session duration will be zero. The idea of this
strategy is that other users may affect the future activ-
ity of the invoking user even less if they are reaching
the point at which they normally log off.

The measure chosen to evaluate the load balancing strate-
gies is the average of the standard deviations of the load
across all systems at each point in the simulation period.
Since the total load across all systems at each point is fixed
by their original sampled values, the standard deviation
at each point indicates how evenly the load has been dis-
tributed. A value of zero indicates a perfect distribution with
balance decreasing as the standard deviation increases.

Figures 4, 5, and 6 show the averages of the standard
deviations of each one minute sample interval when balanc-
ing CPU time, memory usage, and composite CPU/memory
load, respectively, across 2-12 systems. The purely pre-
dictive strategy, which was included only for comparison
purposes, performed the worst on average of any of the
strategies in all three cases. The other predictive strate-
gies were only able to outperform the best-performing tra-
ditional strategy (least load) in 13/33 CPU load cases, 15/33
memory usage cases, and 4/33 composite load cases. The
average performance loss for the CPU and memory cases
was minimal, however, at 0.2% and 0.3%, respectively. The
average loss for the composite case was more significant at
8.6%. Among the predictive strategies, predictive overlap
performed slightly better on average than predictive least
load, which performed slightly better than predictive aver-
age overlap, with each beating least load in 14, 11, and 7
of the 33 cases, respectively. While the benefits of predic-
tion were inconclusive in this portion of the study, the next
section will demonstrate significant improvements achieved
with predictive strategies when paired with dynamically se-
lected load metrics.
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Figure 4. Avg. std. dev. of CPU load

5.2. Dynamic Load Metrics

While the predictive overlap strategies of the previ-
ous section demonstrated how the invoking user’s profile
could be incorporated into different balancing strategies, the
strategies themselves were based upon on a single predeter-
mined metric of either CPU, memory, or composite load.
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As illustrated in Section 4.2, users have widely varying
usage patterns with correspondingly varying requirements,
hence the metric most important to one user is not neces-
sarily the one most important to another. Hence, a balancer
that selects systems using the same metric for all users may
direct users to systems that are inferior for their purposes.
With the ability to balance based on the invoking user
comes the ability to balance based on the metric most im-
portant to each user. This section examines the potential
benefits of selecting the load metric on a per user basis. In
particular, we divide users into four classes depending on
whether they have historically high CPU utilization, high
memory utilization, both high CPU and high memory uti-
lization, or none of the above. The 75th percentile was
used as the dividing line between classes, thus users at or
above the 75th percentile of one or both of CPU and mem-
ory in their profiles were classified accordingly. The best
four strategies of the previous section were then simulated
with the load metric being chosen dynamically based on the
class of the invoking user and compared against standard
least load. CPU time was used as the default metric.
Figures 7, 8, and 9 show the average CPU time, mem-
ory usage, and composite load, respectively, experienced by

users in the corresponding classes over the course of their
sessions. Note that both high CPU utilization users and nor-
mal users are represented in Figure 7 as CPU time was the
default metric. While least load with CPU and composite
metrics produced slightly lower average CPU and compos-
ite loads, respectively, than the dynamic versions of pre-
dictive least load and predictive average overlap, the other
32/36 cases resulted in higher average load. By using the
same metric for all users, hosts with low values are given to
users in other classes who don’t always need low values of
that metric, thereby clogging up systems for those that do.

Dynamic metrics achieved significant decreases in the
average loads that each user cares about most. Adding dy-
namic metrics to least load provided average CPU, memory,
and composite load decreases of 14%, 29%, and 21%, re-
spectively, over standard least load. The best performing
strategy was dynamic predictive overlap, which provided
average CPU, memory, and composite load decreases of
16%, 33%, and 19% over least load and 2.6%, 1.0%, and
2.3% over the other dynamic strategies. From a traditional
global perspective of standard deviation across systems, dy-
namic predictive overlap was actually 0.3%, 40%, and 4.4%
less balanced than least load in the CPU, memory, and com-
posite cases, respectively. As can be seen, however, the
global view is deceptive as the distribution was significantly
better for individual needs.
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Figure 7. CPU load seen by P;; CPU users

Note that dynamic load metrics can be partially emulated
with traditional load balancers by using metric-specific host
aliases (e.g. host-cpu or host-mem). This quickly becomes
impractical, however, as the number of aliases is exponen-
tial (2") in the number of metrics. With just CPU and mem-
ory, there must be 4 aliases. Other useful metrics are net-
work and I/O load, bringing the total to 16. Other charac-
teristics such as differing user accessibility, software license
availability, different file system mounts, etc. would put the
number of aliases out of reach for any user to remember.
Add to this that users may not even know what metrics mat-
ter most for their applications nor how these requirements
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may change over time. With Ballast’s user-specific load-
balancing, profiles are automatically derived and dynami-
cally adjusted over time to match current user activity.

6. Conclusions and Future Work

This paper has described Ballast, an approach to
Balancing Load Across Systems. The main contribution
of Ballast over other balancing approaches is its ability to
perform user-specific balancing of SSH sessions. By tailor-
ing system selections specifically to the invoking user, the
utility to each user can be maximized instead of choosing
a system that may be best according to a common metric,
but not ideal for the user’s needs. Through the use of pre-
diction and dynamic load metrics, Ballast achieved average
load decreases of 16%, 33%, and 19% for CPU, memory,
and composite loads, respectively, over a least load policy
in the metrics most important to each user. The end result is
that access to the invoking user during system selection has
significant benefits for SSH load balancing, which cannot
be achieved with other approaches.

There are several directions for future research. Cur-
rently, data collection relies on periodic samples of the linux

process file system. Precision can be increased by using ker-
nel auditing facilities, although this may induce additional
overhead. Profiling per user application load patterns would
also improve prediction accuracy by taking both user and
application into account. For example, the duration of a
session that immediately runs scp is likely to be less than
that of a normal interactive session.

The per user I/O stats in linux 2.6.20+ kernels are not
available on the systems Ballast was developed for, but
should be integrated into the Ballast agent and server pro-
cessing. Per process network load would also be useful, but
is not yet available in linux kernels. It may be possible to es-
timate this load by analyzing process activity during various
patterns of system network load, but further investigation is
required. Finally, user-specific balancing techniques should
be investigated for protocols besides SSH.
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