Mesh: Secure, Lightweight Grid Middleware
Using Existing SSH Infrastructure-

Paul Z. Kolano
NASA Advanced Supercomputing Division, NASA Ames Research Center
M/S 258-6, Moffett Field, CA 94035 U.S.A.
kolano@nas.nasa.gov

ABSTRACT

Grid computing promises gains in effective computational power,

resource utilization, and resource accessibility, but in order to achieve

these gains, organizations must deploy grid middleware that, in
most cases, does not adhere to fundamental security principles.
This paper introduces a new lightweight grid middleware called
Mesh, which is based on the addition of a single sign-on capability
to the built-in public key authentication mechanism of SSH using
system call interposition. The initial Mesh implementation is com-
patible with approximately 90% of the world’s SSH servers and any
SSH client that supports public key authentication. Resources may
be added to a Mesh-based grid in a matter of minutes using just five
small files and two environment variable settings. Mesh adheres to
fundamental security principles and was designed to be compatible
with strong security mechanisms including two-factor authentica-
tion, SSH bastions, and restrictive firewalls. Mesh uses a remote
command model, which is based on the syntax and commands al-
ready understood by users, thus requires no additional knowledge
to utilize effectively. Several existing services have been integrated
with Mesh to provide resource discovery and query, high perfor-
mance file transfer, and job management.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Privacy Protection—access
controls, authentication; C.2.4 [Communication/Networking and
Information Technology]: Distributed Systems—client/server, dis-
tributed applications

General Terms

Security

Keywords

SSH, access control, authentication, authorization, delegation, dis-
tributed systems, grids, middleware, security, single sign-on

*This work is supported by the NASA Advanced Supercomput-
ing Division under Task Order NNAOSAC20T (Contract GS-09F-
00282) with Advanced Management Technology Inc.

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.

SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.

Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

1. INTRODUCTION

Grid computing [7] aims to connect large numbers of geograph-
ically and organizationally distributed resources to increase com-
putational power, resource utilization, and resource accessibility.
Two fundamental capabilities that grids must provide [8] are single
sign-on, where the same user identity and credentials may be used
for authentication across all grid resources, and delegation, where
users may empower systems and services to authenticate and per-
form operations on their behalf across the grid. These capabilities
support advanced models such as services that automatically select
the most desirable resources for user jobs and then submit the jobs
to those resources without user intervention. Single sign-on and
delegation are implemented within grid middleware that runs as a
network daemon on all grid resources to provide common services
for the grid.

The same capabilities that allow users to easily access many dif-
ferent resources also provide attackers with the means for rapid,
widespread compromise. With single sign-on, compromised user
credentials give attackers instant access to every grid resource. With
delegation, credentials become more vulnerable to misuse as they
are accessed by third party systems and services to perform un-
supervised operations. Finally, the grid middleware that provides
these capabilities is itself potentially subject to remote exploits on
every grid resource. Thus, before any grid middleware can be de-
ployed in security-conscious organizations, it must be backed with
assurance that it has been designed and implemented to minimize
both the opportunity for compromise as well as the damage possi-
ble from compromise.

One basis for such assurance is adherence to Saltzer and Schro-
eder’s fundamental security design principles [28]. Unfortunately,
existing grid middleware implementations do not adhere to these
principles, putting organizations that deploy them at risk. For ex-
ample, three of the most popular middleware implementations are
Globus [6], Condor [18], and UNICORE [5]. Globus is the most
widely deployed grid middleware and is the reference implementa-
tion for many proposed grid standards. The Grid Security Infras-
tructure (GSI), which is the authentication component of Globus,
consists of over 100 MB of source code. Each Globus service han-
dles its own authorization, with the relevant code for each scattered
throughout the remaining 450 MB of the source distribution. This
volume of code makes detailed inspection impossible and breaks
economy of mechanism, in which designs should be kept as sim-
ple and small as possible. The sheer complexity of the system
and its voluminous documentation create a steep learning curve for
all aspects of installation, configuration, maintenance, and usage,
thereby breaking psychological acceptability, in which the human
interface should be designed for ease of use.

Condor’s source code is not publicly available, thus lacks an

open design that is subject to inspection. Its default security model
uses host-based authentication, thereby breaking separation of priv-
ilege as the compromise of one host allows the compromise of all
accounts on all other hosts without any additional user credentials.
Neither Condor nor UNICORE offer any fine-grained authorization
mechanism, thus lack the ability to specify a least privilege policy
in which only the exact operations required are allowed. None of
the three provides any separation of privilege between the ability
to perform grid operations and the ability to modify files that affect
non-grid logins such as shell startup files.

This paper presents a new secure, lightweight grid middleware
called Mesh, Middleware using Existing SSH Hosts. Mesh was
designed to provide simple and easy to use grid capabilities within
a strong security architecture based on fundamental security prin-
ciples. The foundation of Mesh is SSH, which has many desirable
properties as the basis for grid middleware. It is the reference re-
mote login mechanism on all Unix systems, providing a vast in-
frastructure on which grids may be built. It has client support on
most platforms and APIs in most languages. It has built-in support
for scripted operations through the use of public key authentication
and for credential delegation and renewal through SSH agents. All
communication is secured by encryption with both protocols and
implementations subject to rigorous scrutiny. The additional goals
of Mesh were to provide:

e Single sign-on. Users must have the capability to use the
same identity and credentials to access any Mesh resource
for which they are authorized.

e Minimal installation and configuration on existing hosts. En-
abling Mesh capabilities on any host already running an SSH
server should be a trivial procedure.

o Compatibility with existing security models and infrastruc-
tures. Mesh should not impose any constraints on users when
they are not using Mesh services. Mesh should be compatible
with strong authentication mechanisms such as two-factor
authentication.

o Time and scope limited credentials. Operations performed
with Mesh credentials should be limited to those authorized
by site, host, and user policies for a specific time frame.

All services in Mesh are accessed using SSH remote commands
authenticated based on standard SSH private keys loaded into an
SSH agent. Remote commands are based on the syntax, com-
mands, and models already understood by users, thus require no
additional knowledge to utilize effectively. Several existing ser-
vices have been integrated with Mesh to provide a complete grid
environment with support for resource discovery and query, high
performance file transfer, and job management. Mesh is currently
deployed across multiple NASA supercomputing centers to provide
secure unattended remote operations in a single sign-on environ-
ment.

This paper is organized as follows. Section 2 describes related
work. Section 3 gives an overview of the Mesh architecture and its
usage. Section 4 discusses the addition of single sign-on to SSH.
Section 5 presents Mesh authorization. Section 6 describes the ser-
vices that have been integrated into Mesh. Section 7 presents Mesh
performance results. Finally, Section 8 discusses conclusions and
future work.

2. RELATED WORK

There are a variety of efforts related to the problem addressed by
this paper. A single sign-on capability has been integrated into SSH

using various authentication methods including Kerberos, the Grid
Security Infrastructure (GSI), and the UNICORE X.509 infrastruc-
ture. In Kerberos [14], users authenticate to the Key Distribution
Center (KDC) for a given realm using a password to obtain a ticket
for authenticating to a Ticket-Granting Server (TGS). This ticket is
then used to obtain additional limited-lifetime tickets for authenti-
cating to remote servers. Users can obtain tickets to servers in other
realms through trust relationships between KDCs. GSI-Enabled
SSH [10] relies on certificate-based authentication provided by the
GSI component of Globus and is enabled using a specially-patched
version of OpenSSH. UNICORE’s SSH functionality [25] is based
on manipulation of the authorized_keys file returned to the SSH
server. The authorized_keys file is generated dynamically by the
UNICORE client when an SSH connection is requested by the user
and then written to the user’s ~/.ssh directory using the UNICORE
server on the target host, which does not allow users to maintain
their own authorized_keys settings.

All of these approaches have similar drawbacks. They all require
special clients beyond stock SSH to retrieve tickets/certificates and
use them for authentication. They all have a significant code base
and rely on secondary protocols in addition to SSH for security,
thus increasing the potential for security vulnerabilities. They all
have single points of attack (i.e. the KDC of Kerberos and the
certificate authorities for GSI and UNICORE), which, if compro-
mised, allow access to all user accounts within the realm/VO. Fi-
nally, none of them restrict user capabilities after authentication
to the SSH server, thus compromised user credentials allow an at-
tacker to arbitrarily modify the user’s account on every system they
have access to.

Several projects provide restrictive environments for SSH com-
mands in which only file transfers are allowed. McCullough de-
scribes an approach [19] based on SSH forced commands in which
file transfers are only allowed to a specific file path on the desti-
nation system. The Rssh [26] and Scponly [30] projects restrict
SSH functionality by providing a custom user shell that only per-
mits SCP commands. In addition, both shells use chroot() to limit
the user’s access to the file system. These projects are all geared
towards file transfers, however, thus do not allow the user to be
limited to an arbitrary set of commands.

There are a number of sandboxing approaches to limit the op-
erations that an application may perform. Identity boxing [33] ex-
tends traditional Unix discretionary access control by providing a
mechanism to label subjects and objects in the system with arbi-
trary strings instead of the finite space of numerical UIDs. Pro-
cesses run inside an identity box with a given label and can only
access files permitted by ACL for that label even though the actual
UID for the process may allow such access. Systrace [24] provides
a constrained execution environment where an application is only
allowed to invoke system calls permitted by a configurable policy.
Systrace provides an interactive tool to assist in generating policies
for specific applications.

A variety of grid middleware projects exist. Globus [6] is based
on a web service architecture and uses a certificate-based approach
for single sign-on. While Globus is full-featured, it has significant
software requirements on both clients and Globus-enabled hosts.
Globus supports fine-grained authorization through the Commu-
nity Authorization Service (CAS) [22], which issues non-standard
proxy certificates that define the permissions that users have on grid
resources. The only service in which CAS support has been imple-
mented, however, is the GridFTP file transfer service. Globus also
supports the Virtual Organization Membership System (VOMS)
[1], which issues standard proxy certificates that associate a set of
attributes with the user, which can then be used by individual grid

services as they see fit. While users can request proxies with lim-
ited subsets of attributes, to do so they must understand which at-
tributes each service supports, how the service uses those attributes,
and which attributes are required for a given operation.

The Uniform Interface to Computing Resources (UNICORE) [5]
is middleware that can be installed on hosts using only Perl, but still
requires a certificate infrastructure and a specialized client. Condor
[18] is a grid environment whose goal is to increase utilization of
existing resources by farming out jobs to idle workstations. Native
Condor security is based on weak host-based authentication, but
can be strengthened using compatible external security frameworks
such as Kerberos and GSI. Increasing its security in this manner,
however, requires significant software installations and specialized
clients.

GROWL [11] hides the details of grid access behind an abstrac-
tion layer. Applications use the GROWL client library with APIs
in several languages to request operations from a GROWL server.
The GROWL server then processes these requests using the appro-
priate requests to the underlying grid. Grid client software is only
needed on the GROWL server while GROWL clients only require
the lightweight GROWL client library. This approach, however,
does not decrease the complexity of grid server deployment.

WSREF::Lite [20] is a lightweight Perl implementation of the
Web Services Resource Framework (WSRF) that provides a sim-
ple, easy to install hosting environment for WSRF-compliant web
services. WSREF::Lite provides mutual authentication using X.509
certificates, but requires the installation of a special client. GridSite
[4] allows users to authenticate to websites using X.509 certificates
within a standard browser, after which they are allowed edit and
upload web content according to a site security policy. This model
is not suitable, however, for arbitrary grid applications. In M-grid
[37], each computational resource keeps a standard java-enabled
browser continuously running that executes applets downloaded
from a central job management website. M-grid relies on built-in
applet sandboxing to protect resources from malicious code, but the
severe restrictions imposed by the default Java sandbox means that
M-grid can only be used for very limited classes of applications.

3. MESH OVERVIEW
3.1 Mesh Architecture

Each Mesh installation is dedicated to serving a particular vir-
tual organization (VO), which is defined to be a “dynamic collec-
tion of individuals, institutions, and resources” [8]. Mesh allows
individuals in one VO to execute SSH remote commands on Mesh-
accessible resources within other cooperating VOs using a single
Mesh SSH private key (hereafter abbreviated to Mesh key) gen-
erated at the local VO. A full Mesh deployment consists of two
dedicated hosts and three primary software components (besides
SSH itself). The first host, called the Mesh Proxy (MP), is respon-
sible for mediating all SSH remote commands that are to execute
on Mesh-accessible resources within the VO. Users that attempt to
bypass the MP and contact VO resources directly will be unable to
utilize Mesh authentication, thus ensuring complete mediation.

Command mediation on the MP is carried out by a software
component called the Mesh Authorization Shell (Mash). Mash is a
highly flexible and customizable login shell replacement that parses
remote commands and authorizes them against a site security pol-
icy. As part of the authorization process, commands can optionally
be rewritten to force compliance with specific site policies or to
provide enhanced usability. Authorized commands are passed on
to the appropriate VO resource for execution using a second SSH
remote command.

VO resources are made Mesh-accessible by injecting a software
component called the Mesh Interposition Agent (MIA) into the re-
source’s SSH server using library preloading, which dynamically
modifies its behavior during public key authentication. Instead of
authenticating against the authorized_keys file stored locally in the
user’s home directory, the MIA causes the server to authenticate
against an authorized_keys file retrieved at run-time from a sec-
ond dedicated host within each VO called the Mesh Authentication
Point (MAP).

Single sign-on is achieved during key retrieval from the MAP
and authentication to the MP. In Mesh, each individual is assumed
to have a home VO, which is the VO with which they are most
frequently associated (e.g. the institution for which they work).
When a key is retrieved by the MIA from a MAP that is not the
user’s home MAP, the key retrieval is propagated to the home MAP.
Likewise, when authenticating to an MP that is not the user’s home
MP, that MP will initiate a key retrieval from the home MP. Thus,
a Mesh key generated at the home VO is valid at all VOs. Figure
1 shows the basic steps of this process, which will be discussed in
detail throughout the remainder of the paper.

Once the user has authenticated successfully on the Mesh-acces-
sible resource, the MIA ignores the user’s login shell and instead
executes the remote command issued by the MP using a software
component called the Mesh Exec Security Shell (Mess). Mess is
a constrained execution shell that ignores metacharacters and only
executes programs authorized by the administrator and not disal-
lowed by the user. While the command is executing, it is subject to
read, write, and execution controls enforced by the MIA. Once the
command terminates, the SSH sessions will terminate as the final
step.

The authentication and authorization components of Mesh may
be deployed independently, thus allowing VOs to choose between
a full deployment, a deployment of only the single sign-on features
without proxying or additional authorizations, or a deployment of
only authorization components without single sign-on. To simplify
the discussion, the remainder of the paper assumes a full deploy-
ment. Although originally intended for grid-like operations, or-
ganizations without an interest in grid computing can still deploy
some or all of Mesh to take advantage of the additional security
features it adds to stock SSH installations.

3.2 Mesh Usage

To use a Mesh-based grid, users must obtain a Mesh key by in-
voking the mesh-keygen command on their home MP (via an SSH
remote command), as shown in steps (1) and (2) of Figure 2. This
command uses ssh-keygen to create a public/private key pair. The
public key is then stored on the MP and copied to the MAP using
an SSH remote command. The user must authenticate to both the
MP and the MAP during this process to prevent an attacker that
compromises the MP from arbitrarily placing keys on the MAP,
thereby compromising all accounts. Once the user has successfully
authenticated twice, the private key is returned for their use. Keys
may also be obtained from foreign (i.e. non-home) MPs, but those
keys may only be used within the associated VO. This provides re-
siliency in case the home MP is not accessible. Users may revoke
one or all keys by invoking the mesh-keykill command on the MP
on which they were generated.

The Mesh key generation process was explicitly designed to ac-
commodate VOs that require two-factor authentication to access
resources. Since grids are used for processing complex workflows
that require unattended remote operations, they are fundamentally
incompatible with two-factor authentication since the user is not
always there to provide the second factor, such as a physical token

Foreign MAP maps user Authorized_keys returned

(5) to muser and retrieves (6) and SSH authentication
authorized_keys from continues
stel | home MAP Site 2 >
MAP [T MAP |
-t
MIA queries MAP |51 2
User executes command (4)) Mesh—
() . for authorized_keys
Site 1 through foreign MP Accessibld
Host Resource
v (MIA in
sshd)
Site 1 < Site 2 >
MP . MP
Foreign MP maps user to muser Command passed
and retrieves authorized_keys on to resource
(2) from home MP 3) after authorization

Figure 1: Mesh remote command processing

or biometric property. For such VOs, Mesh can be configured to
require two-factor authentication to obtain a Mesh key and to limit
key lifetime to the extent desired. Thus, while it is still not possi-
ble for the user to be present during unattended operations, it can
be guaranteed that all Mesh keys used for such operations are di-
rectly bound to a successful two-factor authentication within some
configurable time into the past. This allows Mesh to coexist with
strong authentication to the extent possible.

In the Mesh design, the user is only required to know the host
name and public SSH host key (or fingerprint) of their home MP.
When a user wishes to invoke a remote command on a Mesh-acces-
sible resource outside of their home VO for the first time, they must
retrieve the information needed to communicate with the MP pro-
tecting that resource. This includes the host name of the MP, the
port number and public host key of the SSH server on that MP, and
the user name of that individual on the MP. This information can be
retrieved by invoking the mesh-getmp command on their home MP,
as shown in step (3) of Figure 2. The MP host name and port are de-
rived based on a mapping from IP addresses/netmasks to MP host
names, called the mps file that is exchanged between VOs along
with the MP/MAP public SSH host keys when they first decide to
cooperate. The appropriate user name is retrieved from the foreign
MP and then returned to the user with the rest of the information,
as shown in steps (4) and (5) of Figure 2.

4. MESH AUTHENTICATION

The authentication component of Mesh is responsible for adding
single sign-on to the standard SSH public key authentication mech-
anism. In the standard mechanism, each user has an authorized_keys
file on each host (traditionally in their ~/.ssh directory), that dictates
which private keys can be used to authenticate to the SSH server.
A private key can be used for authentication if the corresponding
public key is listed in the authorized_keys file. The standard mech-
anism is unsuitable for single sign-on as it would require copying
every user’s authorized_keys file to every host, which does not scale
to large numbers of hosts across multiple VOs.

Instead of distributing authorized_keys files across all grid re-
sources, Mesh uses system call interposition [13] to dynamically
modify the behavior of system calls within stock SSH servers to
retrieve public keys on-demand from a centralized source within
each VO when needed. This approach is preferable to modifying
SSH itself since it does not require source code to be kept up-to-
date with the latest patches and revisions nor is there the possibility
for introducing bugs into the code. It is also preferable to using a
customized file system such as FUSE [9] to affect access to the au-

thorized_keys file as changes are isolated to a single process on the
system, thus keys are not subject to tampering by other processes.
The traditional approach to adding authentication mechanisms to
Unix systems through Pluggable Authentication Modules (PAM)
[29] is not suitable for Mesh because no PAM module exists to
perform SSH public key authentication. Finally, system call inter-
position allows Mesh to enforce additional access controls by in-
tercepting appropriate system calls, as will be discussed in Section

Sitel
Host

(3) home MP to find

Sitel
MAP
() Public key copied
User/MP/ to home MAP
5 port/host key Home MP queries
) retumed .
return (4) foreign MP to
o Stel find user name | Site2
. MP | MP
Ll Ll
User queries
A

user/MP/port/host key (1) User generates key
for given resource pair on home MP

Figure 2: Mesh user preparation

5.4, which would not be feasible with other approaches.

4.1

Mesh Interposition Agent

During authentication, the Mesh Interposition Agent (MIA) in-
tercepts SSH server system calls related to authorized_keys file
access. The MIA is written in Bypass [34], which is a minimal
syntactic wrapper around C/C++ code that isolates the user from
slight differences in system call interfaces and implementations be-
tween Unix operating systems. The MIA has been implemented for
OpenSSH [21], which has an almost 90% market share [32], thus
will work with the vast majority of SSH installations. A similar
approach would most likely work with other SSH implementations
(in particular, the SSH.COM Tectia Server [31], which shares its
ancestry with OpenSSH), but will not be discussed. The MIA is
injected into an OpenSSH server using library preloading by set-
ting the appropriate environment variable (e.g. LD_PRELOAD or

_RLD_LIST) to the location of the MIA shared library.

In OpenSSH, an authorized_keys file is read into memory using
two basic steps. First, the server invokes the stat() system call on
the key file to obtain information such as ownership, permissions,
size, etc. For the server to accept the key file, it must exist with a
size greater than zero and have appropriately restrictive permissions
(i.e. not group or world writable). If these conditions hold, the
server reads each line (i.e. key) in the file using the fgets() standard
C library function and performs the appropriate steps to test if the
user has the corresponding private key. Note that this behavior is
identical across all versions of OpenSSH portable releases from the
initial version 1.0prel of Oct. 1999 up to the latest version 4.5p1 of
Nov. 2006. Thus, the MIA is likely to work with all past releases

as well as new releases for the foreseeable future.

The MIA intercepts the stat() call to guarantee that whenever the
stat() of a key file is requested, that file will exist with the correct
permissions and a non-zero size. When the file does not already ex-
ist, it is created and padded to a non-zero size. The intercepted stat()
then uses the standard stat() to return the file’s information. The
fgets() call is intercepted to provide an appropriate authorized_keys
file to the SSH server. In this case, an fgets() call to the user’s au-

thorized_keys file produces a callout to an external program called
mesh-getkey-hook. This program is responsible for returning an au-
thorized_keys file to a given file stream that can be read a line at a
time by the intercepted fgets() call. Since mesh-getkey-hook may
need to access sensitive data not accessible by ordinary users such
as private keys, it is executed with elevated (i.e. root) privilege. Af-
ter it returns, privileges are dropped back to the user level. In the
default Mesh implementation, mesh-getkey-hook is a simple script
that retrieves an authorized_keys file via SSH from the local MAP,
which is described in the next section.

4.2 Mesh Authentication Point

The Mesh Authentication Point (MAP) provides an authorized_-
keys file for each user of a particular VO to MIAs running on Mesh-
accessible resources within the VO. These files are retrieved from
the MAP during the mesh-getkey-hook callout of each MIA, which
performs an SSH to the local MAP and invokes the mesh-getkey
command, as shown in step (4) of Figure 1. This command takes a
user name and returns that user’s authorized_keys file with the SSH
connection ensuring the integrity of the file.

In order to invoke mesh-getkey on the MAP, each Mesh-accessible
resource must have a private key that can be used to issue a remote
command to the MAP as a designated MAP user. Using the mech-
anisms that will be discussed in Section 5.2, each user/key pair is
restricted such that the one and only operation it may perform is
retrieving authorized_keys files via mesh-getkey. Thus, even if a
Mesh-accessible resource is compromised and the MAP key read,
the attacker can only obtain user public keys, which cannot be used
to compromise the private keys, thus has negligible security impact.

For resiliency, Mesh-accessible resources of the local VO accept
both locally generated Mesh keys as well as keys generated at the
user’s home VO. Thus, the authorized_keys file returned by mesh-
getkey must contain both the public key stored on the local MAP
as well as the public key stored on the user’s home MAP. Since
the user names of the same individual may differ across VOs or
across organizations within the same VO, the local MAP cannot
simply use the same user name it was given by the MIA to request
the appropriate public key from the home MAP. Otherwise, the key
returned by the home MAP may be for a completely different indi-
vidual or may not exist at all. To ensure that MAPs refer to the same
individual, mesh-getkey first maps the local user name into a glob-
ally unique Mesh user name in X.509 Distinguished Name [36] for-
mat, called the muser name. This is done using a file of three-tuples
called the musers file. Tuples consist of a user name a muser name
and an organization within the local VO to which this mapping ap-
plies. Note that VOs must only define tuples for their own user
base. As with any grid solution, however, VOs may have policies
that require all users of their systems to have a local account (with
associated paperwork), in which case the local user base by neces-
sity also contains individuals from other VOs. For VOs with more
flexibility, such as permitting dynamically-generated accounts, the
administrative overhead of the musers file can be avoided in favor
of a dynamic user/muser mapping function.

A second configuration file, called the maps file, containing map-
pings from muser-based regular expressions to MAP host names, is
then used to find the home MAP of the muser. To retrieve the pub-
lic key from the home MAP, the local MAP must have a user/key
pair for the home MAP just as the local MIA has a user/key pair for
the local MAP. In general, each MAP must have a user/key pair for
all other MAPs with which it cooperates. The local MAP uses the
appropriate user/key pair to invoke mesh-getkey on the home MAP,
as shown in step (5) of Figure 1. The home VO key is then concate-
nated with the local VO key and returned to the requesting MIA, as

shown in step (6) of Figure 1. The resulting authorized_keys file
is redirected by the calling mesh-getkey-hook into a file stream,
which is read by the MIA and returned as the result of fgets(). Fi-
nally, the SSH server verifies that the user has the corresponding
private key and authentication either succeeds or fails.

5. MESH AUTHORIZATION

The authentication described in the previous section also pro-
vides simple authorization. Namely, if a given user does not pos-
sess an appropriate private key with which they can authenticate,
they will be denied access to all Mesh-accessible resources. If de-
sired, Mesh can be deployed with no further authorizations. Ba-
sic system authorization, however, is not sufficient for strong secu-
rity in grid environments, thus a full deployment is recommended.
First, for a resource added to a grid to be useful, that resource
must be accessible from throughout that grid, which also provides
a channel of attack. Many organizations block access to internal re-
sources using a firewall and/or bastion for just this reason, thus ex-
posing these resources to the outside world is not compatible with
existing security models and infrastructures. Second, grids support
delegated credentials that may be used by systems/services to per-
form operations on the user’s behalf. Thus, compromises or bugs
associated with such systems/services may lead to those credentials
being used for unintended or unexpected purposes. For this reason,
the operations permitted by grid credentials should be limited ac-
cording to site security policy as well as a policy acceptable to the
user.

Besides basic system authorization, Mesh implements four addi-
tional layers of authorization. First, remote commands may only be
invoked on Mesh-accessible resources by passing through the MP.
Second, remote commands are only allowed to pass through the
MP after authorization and rewriting by Mash. Third, commands
on Mesh-accessible resources are subject to additional host- and
user-specific authorizations enforced by Mess. Finally, commands
are restricted in what they can do on each Mesh-accessible resource
by the MIA.

5.1 Mesh Proxy

The MP is responsible for limiting the exposure of Mesh-acces-
sible resources within a particular VO to attack by mediating all
remote commands before they are executed on those resources. In
general, any command ““ssh host command” that the user wishes to
execute on a given Mesh-accessible resource, must be prepended
with “ssh MP” to that VO’s MP. If the user tries to bypass the MP,
even if the remote host is accessible from the network, authentica-
tion to that host using their Mesh key will fail.

This protection is implemented by the interception of the ac-
cept() system call by the MIA. In OpenSSH, the server accepts
one waiting network connection using accept(), then forks a pro-
cess to handle the connection. As part of an accept() call, the IP
address of the connecting host is filled into an appropriate data
structure. The MIA uses this address to moditfy its behavior accord-
ingly. If the host corresponds to the IP address of an MP defined in
the MESH_MP_IPS environment variable, the MIA will authenti-
cate using the MAP. If the host does not correspond to an MP, the
MIA does not load itself into the forked process, thus forcing SSH
back to built-in authentication methods. This approach provides
compatibility with existing security models and infrastructure since
users not connecting through the MP can use whatever credentials
and authentication methods the VO normally supports (e.g. their
normal authorized_keys file) and allows minimal installation and
configuration on existing hosts since only a single SSH server is
required (although a second SSH server can still be run if desired).

In order for the MP of one VO to accept a key generated at an-
other VO, MPs must support remote key retrieval in the same man-
ner as Mesh-accessible resources. This is enabled in the same fash-
ion by preloading the MIA into the MP SSH server. Instead of
invoking mesh-getkey on another host, however, the mesh-getkey-
hook of the MP invokes mesh-getkey on itself, which retrieves
both the locally stored public key as well as the public key from
the user’s home MP, as shown in step (2) of Figure 1. Note that
the home VO key is retrieved from the home MP instead of the
home MAP to maintain the separation of privilege between site and
host authentication carried out by the MPs and MAPs, respectively.
Thus, each MP must have a user/key pair with which to retrieve
public keys from other MPs, just as each MAP has similar access
to other MAPs. Each MP must also have its own musers and maps
files to derive the home MP.

5.2 Mesh Authorization Shell

Since all remote commands to Mesh-accessible resources must
pass through the MP, this also provides a point at which those com-
mands can be examined for conformance to site security policy.
For example, a policy might specify which commands each user
is allowed to execute and with what arguments. SSH provides a
built-in mechanism for enforcing such policies using forced com-
mands in the authorized_keys file. Forced commands are only ap-
plied during public key authentication, however, thus cannot offer
any protection during Mesh key generation, when non-public-key
authentication mechanisms are used. Instead, the approach used by
Mesh is to set the default shell for all MP users (also used for all
MAP users) to a special restricted shell called Mash. SSH invokes
the user’s shell for both remote commands as well as interactive
sessions, thus Mash is always invoked and has access to the user’s
command before it is actually executed.

The set of security policies that Mash enforces is defined in an
XML configuration file called the mashrc file. Each policy in this
file specifies the restrictions that the remote command must satisfy
before it is executed. Mash distinguishes between commands al-
lowed to execute locally on the MP (or MAP) and commands prox-
ied by a second SSH connection to a Mesh-accessible resource. In
the latter case, the arguments and options to the second SSH ses-
sion are parsed and stripped away before authorizing the remainder
of the command. Each command or set of commands can be asso-
ciated with a set of rules that define the conditions under which it is
authorized. Mash currently implements eight types of rules based
on key generation time, SSH connection properties, command op-
tions, command arguments, invoking user, invoking group, home
VO of invoking user, and environment settings. Delegation of the
SSH agent connection to the target host can also be enabled or dis-
abled on a per command basis.

Figure 3 shows a sample fragment of a mashrec file for the “bbftpd”
command, which invokes the server portion of the BbFTP protocol
[3] discussed later in Section 6.2. The parsers section defines how
command options should be parsed (based on Perl Getopt::Std and
Getopt::Long syntax) as well as the basic set of rules that hold for
all instances of a particular command. The bbftpd command ac-
cepts options without values in the set {b, c, f, p, s, u, v} as well
as options that take values in the set {e, 1, m, w, R}. Additionally,
it does not take any non-option arguments besides the command
name, it should require the “-s” option, and it should disallow op-
tions in the set {b, c, p, u, v, w, R}. The proxies section defines
on which hosts commands may execute along with additional re-
strictions and host-specific configuration. In the example, bbftpd
is allowed to execute on the host “some_host”, but only by user
“some_user” and only when authenticating using a Mesh key. The

<mashre>
<parsers>
<bbftpd>
<getopt>bcfpsuve:l:m:w:R:</getopt>
<argument><count>1</count></argument>
<option>
<regex>"(?=.*("\n)s)(?!.*("\n)[bcpuvwR])</regex>
</option>
</bbftpd>
</parsers>
<proxies>
<ssh>
<directory>/usr/bin</directory>
<port>22</port>
<argument>
<value index="1">some_host</value>
</argument>
<environment>
<set name="MESH_PUBKEY"/>
</environment>
<user><some_user/></user>
<commands>
<bbftpd>
<directory>/usr/bin</directory>
</bbftpd>
</commands>
</ssh>
</proxies>

</mashrc>

Figure 3: Sample mashrc fragment for BbFTP

instance of bbftpd allowed to execute on some_host is the one in-
stalled in the “/usr/bin” directory.

In addition to disallowing specific arguments and/or options to
remote commands within the configuration file, Mash also per-
forms command rewriting to force compliance with site security
policy and to enhance usability. Security-related rewriting includes
operations such as stripping undesirable options and/or arguments
and replacing relative paths with absolute paths to ensure that users
execute only the authorized instances of commands. Since paths
may differ across grid resources, path rewriting also enhances us-
ability since the knowledge of where each authorized command
resides is stored on the MP. Thus, a user may just use the base com-
mand name and the correct path will be automatically prepended.
This is similar to the UNICORE's instantiation of abstract job ob-
jects when passing through its Network Job Supervisor [5]. Once
Mash has authorized and rewritten a command, it is then passed on
to the Mesh-accessible resource for execution, as shown in step (3)
of Figure 1.

5.3 Mesh Exec Security Shell

After the SSH server on a Mesh-accessible resource authenti-
cates the user based on the authorized_keys file returned from the
MAP, it then executes the user’s command. Normally, this com-
mand is executed with the user’s login shell. In Mesh, however, the
MIA dynamically maps the user’s login shell to a restricted shell
called Mess, which provides protection against many of the attacks
to which traditional shells are susceptible. First, Mess will only ex-
ecute those commands authorized by the administrator in a global
configuration file called the meshrc file. While this protection is
provided by Mash on the MP, Mess provides defense-in-depth such
that even if the MP itself is compromised, an attacker still cannot
execute arbitrary commands. This increases administrative over-
head on each Mesh-accessible resource, but the simple format of
the meshrc file allows each command to be authorized using a sin-
gle line “+x /path/to/command”, thus overhead is fairly minimal.

For additional protection, Mess does not support relative paths,
thus attackers cannot execute alternative commands through path
variable manipulation. Usability is unaffected since Mash rewrit-

ing on the MP always provides the absolute path to all commands.
Mess also does not support metacharacters, which prevents hid-
ing additional commands in original command’s arguments using
metacharacters such as backtick. Finally, Mess supports user-level
policies that allow users themselves to specify which operations are
permitted on each Mesh-accessible resource. Users specify these
restrictions in a meshrc file in their home directory on each Mesh-
accessible resource. By default, if no such file exists for a given
user, no Mesh operations can be performed with that account. If
the file does exist, all operations authorized by the global meshrc
are allowed, but users can disable any or all of those commands
using “-x /path/to/command”.

5.4 Mesh Interposition Agent

Enforcing a given site security policy is complicated by the fact
that the user must not be restricted in any way on Mesh-accessible
resources when they authenticate through a site’s normal authenti-
cation procedures or else Mesh would not be compatible with ex-
isting security infrastructure. Since the user may have another un-
restricted means to access these resources, they are able to modify
their configurations on those systems at will. Thus, a primary con-
cern is ensuring that configuration changes made through normal
access channels cannot be used to interfere with remote commands
issued by the MP.

Commands issued to an SSH server are susceptible to several
forms of interference, some of which cannot be prevented within
current OpenSSH implementations. These include setting envi-
ronment variables in ~/.ssh/environment that affect command ex-
ecution, such as LD_PRELOAD, adding arbitrary commands to
~/.ssh/rc or to shell startup files such as ~/.cshrc, ~/.tcshre, or ~/.zsh-
env, and adding forced commands to ~/.ssh/authorized_keys. Al-
though many of these forms of interference are prevented by the use
of Mess, additional code within the MIA provides its own protec-
tion for defense-in-depth. All but forced commands are blocked by
disallowing access to ~/.* files with the exception of ~/.ssh/authori-
zed_keys, which must be accessible by the SSH server even if it
is not the file actually used as described in Section 4.1. This is
done by intercepting the system calls relevant to file access such
as open() and stat(). The code also protects against indirect ac-
cess via manipulation of hard and symbolic links. It is not possible
for users to add forced commands within Mesh since the autho-
rized_keys file used for authentication is retrieved from the MAP.
The MIA still provides protection against forced commands in the
retrieved file by ignoring key lines containing the term “command”
in case the MAP itself has been compromised.

Because grid credentials may be delegated for use by a variety
of systems and services, it is desirable to place additional restric-
tions on the actions those credentials may perform. Besides the
time and scope limitations provided by Mash and Mess, the MIA
provides one final layer of authorization. By the time a remote
command is ready for execution on a Mesh-accessible resource, it
has been severely vetted by other Mesh components. A remaining
concern, however, is that a legitimate operation permitted through
the MP can be used to compromise a later unrestricted non-Mesh
session. For example, if file transfer commands such as SCP are
allowed through the MP, then the attacker could copy their own au-
thorized_keys file to be used through a non-Mesh session or plant
a trojan in the user’s ~/bin directory. Since, in general, an attacker
cannot interfere with later sessions if they cannot modify files, by
default, the MIA does not allow any writes to the file system unless
previously authorized. This protection is implemented by intercept-
ing additional file-related system calls such as chmod(), rename(),
unlink(), etc. Users can authorize writes to specific directories by

listing them in their meshrc file, which must be edited through a
non-Mesh session. Administrators can authorize writes for all users
using the global meshrc file. Writes to any file or directory begin-
ning with “” in the user’s home directory are always forbidden,
thus preventing most attacks even if the user permits writes in their
home directory.

6. MESH SERVICES

The Mesh security core of Sections 4 and 5 provides the basic
grid foundation of single sign-on, delegation, and fine-grained au-
thorization. Using this foundation, VOs must then decide which
services they wish to make available and under what conditions.
Any service to be incorporated into Mesh must be invokable from
the command line. This includes any application with a command
line interface (CLI) as well as X11 applications that may utilized
through the built-in X11 forwarding functionality of SSH. TCP ser-
vices may be utilized similarly using the SSH port forwarding fea-
ture, which allows the use of the native client for the duration of
the MP connection. Since the associated TCP server is a separate
process invoked independently of the SSH server, however, Mesh
cannot enforce the MIA authorizations in this case unless the MIA
is also loaded into that server at startup.

An SSH remote command service model offers several advan-
tages. Perhaps the most important advantage is usability. Users do
not need any specialized knowledge to take advantage of a Mesh-
based grid and can utilize the same interfaces they know and use
every day from their interactive prompt. The second advantage is
ubiquity. SSH is available on a wide range of devices from PDAs
to routers to game consoles with APIs for all of the most commonly
used programming languages. Any device with SSH and network
access can be used to access a Mesh-based grid without the need
for any additional software.

After authentication and authorization, the most basic grid ser-
vices [8] are those for resource discovery and query, high perfor-
mance file transfer, and job management. Together, these services
support the traditional grid computing model where users (1) deter-
mine what resources are available and what they are capable of, (2)
transfer data and/or software resources to the storage resource(s)
associated with a given compute resource, and (3) execute that soft-
ware using that data on that compute resource. Mesh has been inte-
grated with several existing projects to provide these basic services.
The following sections briefly describe these services and the secu-
rity considerations for each.

6.1 Resource Discovery and Query

Grid information services collect information about the resources
on a grid, which can be queried by users and/or other services. Grid
resource brokers use this information to automatically select and
rank resources based on user constraints and preferences. For ex-
ample, to execute properly, a user’s application may require a com-
pute resource with Java JRE 1.5.0 installed. The same interfaces
that allow users to find and select the most desirable resources for
running their applications, however, also allow attackers to find and
select the resources most vulnerable to attack such as compute re-
sources running versions of software with known remote exploits.
Thus, at the minimum, such services must only be exposed to au-
thenticated users. Information services have need of additional au-
thorizations as they must accept information updates from systems
and, in some cases, users.

Mesh has been integrated with the Surfer resource broker [15]
and the Pour information service [16], both of which were designed
to be lightweight and accessible from the command line. Surfer
CLI access is restricted using basic Mesh authentication and autho-

rization, while delegation is used by Surfer to query Pour instances
across VOs. Pour is unique in that it can generate certain types of
information on-demand when not found in the local database using
remote commands constructed from the contents of user queries.
The executables used for these queries are fixed for each Pour in-
stance, however, thus can be authorized individually using Mash
and Mess configuration. Pour implements its own security to re-
strict access to its database since it is beyond the control of Mesh
file system authorizations. Users are allowed to add their own infor-
mation, but all such information is tagged with their grid identity,
which in the case of Mesh is their muser name. Users can only re-
move information they added and can limit their queries to ignore
information added by others.

6.2 High Performance File Transfer

While initial access to resources may occur through grid mech-
anisms, the applications that eventually execute on compute re-
sources operate in terms of traditional file systems and the asso-
ciated access control models. File transfer services for grids must
respect existing permissions and must support authorization at the
file/directory level in order to protect the sensitive files in user
directories that can affect current and future logins such as shell
startup files, authorized_keys files, executables and libraries in the
user’s path, etc. Because Mesh operates at the system call level and
restricts access to individual directories as discussed in Section 5.4,
Mesh provides strong security for any file transfer service that can
be invoked directly by the user over an SSH connection. Mesh sup-
ports built-in SCP and SFTP transfers and has been integrated with
Bbcep [2], BbFTP [3], and Rsync [27] to provide high performance
capabilities.

6.3 Job Management

Unlike traditional compute resources where users can directly
execute programs as desired, high-end compute resources are un-
der the control of job managers that allocate chunks of the resource
for exclusive use by individual users for limited periods of time. In
the grid paradigm, high-level grid services may submit jobs on the
user’s behalf. For example, in a complex workflow, less compute-
intensive tasks may be performed on low-end resources with the
resulting data transferred to a high-end resource and a job automati-
cally submitted to perform the next stage of the computation. Since
jobs execute arbitrary code of unknown effect completely beyond
the control of the submitting grid software once passed to the job
manager, delegated job submission represents a significant security
risk. Given the high cost, large number of processors, and possibly
one-of-a-kind nature of high-end compute resources, however, im-
posing additional security controls, which would result in a loss of
precious CPU cycles, is not an acceptable option.

Mesh has been integrated with the Portable Batch System (PBS)
[23], where the PBS “qsub”, “qdel”, and “gstat” commands may
be used to submit, revoke, and monitor jobs, respectively. The ap-
proach taken by Mesh to secure job submission is based on fail-
safe defaults and least privilege. By default, users cannot submit
any jobs through Mesh even if authorized by the administrator. To
enable job submission, the application path given to the qsub com-
mand must match a path that has been authorized individually by

the user in their meshrec file using a line “+qsub /path/to/application”.

Thus, users must accept the risks of job submission only for the
applications they specifically need. This protection takes advan-
tage of extended rules within Mess that allow any command autho-
rized with “+x /path/to/command” in the global meshrc file to have
an extended rule “4+command <constraints>", which can be tested
against the contents of the user’s meshrc file. Since this autho-

rization takes place on Mesh-accessible resources, job submission
capabilities are also protected against a compromise of the MP.

7. MESH PERFORMANCE

Table 1 shows the overhead imposed by Mesh during the various
authentication and authorization stages of a command’s execution.
Measurements were gathered in a testbed consisting of four 2.4
GHz Pentium 4 machines running Linux with 512 MB of memory
connected by 100 Mb/s ethernet. Each command was run with the
target in the home VO and with the target in a foreign VO. In the
foreign VO tests, one host had dual roles as the home MAP and
MP, respectively. The overhead for the mesh-getkey command on
the MAP was less than that of the /bin/true command on the MP
because the MAP’s Mash policy is smaller, thus requires less pro-
cessing. Foreign VO operations incurred an additional overhead of
two mesh-getkey commands.

From the user’s perspective, the Mesh overhead incurred for a
single command is fairly insignificant. This overhead becomes no-
ticeable, however, when running many commands in quick succes-
sion as seen in the “10 * ssh MP ssh target /bin/true” case. To over-
come sequential overhead, Mash and Mess support batched com-
mands using the standard shell semicolon operator. Each batch is
authenticated, authorized, and executed as a group, thus incurring
Mesh overhead only once per batch, which significantly reduces the
total execution time as seen in the “ssh MP ssh target 10 * /bin/true”
case. The low-level authorizations of the MIA also incur minimal
overhead as shown by the SCP transfer of 100 files. The perfor-
mance of the applications integrated with Mesh is reported in re-
spective papers for Surfer [15], Pour [16], Bbcp [12], BbFTP [12],
and Rsync [35].

The main scalability concern in the Mesh architecture is the MP
since it is responsible for proxying all remote commands issued to
a particular VO. Each MP can only support a finite number of con-
current SSH sessions due to hardware and/or operating system lim-
itations such as the amount of physical/virtual memory, the maxi-
mum number of concurrent processes, and the maximum number of
open file descriptors. These limits may be reached when supporting
a large number of users or through frequent use of commands with
potentially long running times, such as large file transfers. Typical
server configurations can easily support thousands of simultaneous
connections, but for VOs in which these limits become a problem,
the MP can be scaled linearly using multiple physical hosts with an
appropriate server load balancing mechanism such as Linux Vir-
tual Server (LVS) [17]. In this configuration, it is necessary for the
MPs to share the same SSH host key and have access to the same
set of user public keys. Keys can be shared using an appropriately
secured shared file system or a secure copy to all other MPs of the
cluster during key generation. Alternatively, these VOs can deploy
Mesh in its less secure, but more easily scalable configuration that
allows direct access to Mesh-accessible resources. The MAP only
supports short-lived commands by default so is less likely to be
affected by these limits.

8. CONCLUSIONS AND FUTURE WORK

This paper has described a new lightweight grid middleware called
Mesh, Middleware using Existing SSH Hosts. Mesh provides a
single sign-on grid environment based on SSH public key authen-
tication with facilities for resource discovery and query, high per-
formance file transfer, and job management. The Mesh security
architecture limits potential damage from compromise to the great-
est extent possible and adheres to fundamental security principles
[28].

Target Location Home VO Foreign VO
Command Measure Non-Mesh | Mesh | Total || Non-Mesh | Mesh | Total
ssh MAP mesh-getkey user (from target) 0.17 0.24 | 041 0.17 0.60 | 0.77
ssh MP /bin/true 0.17 047 | 0.64 0.17 0.89 | 1.06
ssh target /bin/true (from MP) 0.18 0.46 | 0.64 0.18 0.85 1.03
ssh MP ssh target /bin/true 0.35 1.00 | 1.35 0.35 1.81 | 2.16
10 * ssh MP ssh target /bin/true 3.50 10.0 | 135 3.50 18.3 | 21.8
ssh MP ssh target 10 * /bin/true 0.35 1.57 | 1.92 0.35 238 | 2.73
scp -S ’ssh MP ssh’ -r /dir target: (100 1MB files) 14.4 1.10 | 155 14.4 1.90 | 16.3

Table 1: Mesh overhead (secs)

Users access remote services based on the commands and syn-
tax with which they are already familiar, thereby promoting psy-
chological acceptability. All access to Mesh services must pass
through the Mesh Proxy (MP), which provides complete media-
tion of remote commands. Only those operations authorized by
site policy are allowed to pass through the MP and only for a finite
time frame, thus limiting users to least privilege. A separation of
privilege between site and host authentication is provided by the
MP and Mesh Authentication Point, respectively, which prevents
a full site compromise when only one is breached. A separation
of privilege is also provided between the user’s ability to execute
a remote command and the ability of that command to write to the
remote file system by requiring the user to login interactively to
explicitly authorize writes beyond the fail-safe default of no write
access. A similar separation and default is provided for job submis-
sion, where users must authorize each application individually. The
entire code base of the Mesh security core is less than 2500 lines
of code, thereby achieving economy of mechanism, and will be re-
leased as open source to provide an open design subject to scrutiny
by all.

There are several directions for future research. Additional re-
strictions may be added to the Mesh Interposition Agent such as al-
lowing the user to restrict what directories can be read beyond nor-
mal file system permissions when they invoke operations through
Mesh. For example, a directory with sensitive data can be excluded
in case the user’s Mesh key is compromised. Support for other
SSH server implementations will also be investigated. Alternatives
to library preloading will be studied to support protection within
static binaries. In general, more experience is necessary with Mesh
in a production environment to determine the capabilities that are
missing or that need to be enhanced.

9.
(1]

REFERENCES

Alfieri, R., Cecchini, R. et al.: From gridmap-file to VOMS:
Managing Authorization in a Grid Environment. Future
Generation Computer Systems, vol. 21, num. 4, 2005.
Bbcp.
http://www.slac.stanford.edu/~abh/bbcp.
BbFTP. http://doc.in2p3.fr/bbftp.

(2]
[3]
[4] Doyle, A.T., Lloyd, S.L., McNab, A.: GridSite, GACL and
SlashGrid: Giving Grid Security to Web and File
Applications. UK e-Science All Hands Meeting, Sep. 2002.
Erwin, D.W.,, Snelling, D.F.: UNICORE: A Grid Computing
Environment. 7th Intl. Euro-Par Conf., Aug. 2001.

Foster, 1., Kesselman, C.: Globus: A Metacomputing
Infrastructure Toolkit. Intl. J. Supercomputer Applications,
vol. 11, num. 2, 1997.

[7] Foster, L., Kesselman, C. (eds.): The GRID: Blueprint for a

(5]

(6]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]
[22]

(23]

New Computing Infrastructure. Morgan-Kaufmann
Publishers, Nov. 1998.

Foster, 1., Kesselman, C., Tuecke, S.: The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. Intl. J.
Supercomputer Applications, vol. 15, num. 3, 2001.
FUSE. http://fuse.sourceforge.net.

Globus Project: GT 4.0: GSI-OpenSSH. Dec. 2005.
Available at http://www.globus.org/toolkit/
docs/4.0/security/openssh.

Hayes, M., Morris, L. et al.: GROWL: A Lightweight Grid
Services Toolkit and Applications. UK e-Science All Hands
Meeting, Sep. 2005.

Hughes-Jones, R., Dallison, S.: Investigating the Interaction
Between High-Performance Network and Disk Sub-Systems.
3rd Intl. Wkshp. on Protocols for Fast Long-Distance
Networks, Feb. 2005.

Jones, M.B.: Interposition Agents: Transparently Interposing
User Code at the System Interface. 14th ACM Symp. on
Operating System Principles, Dec. 1993.

Kohl, J.T., Neuman, B.C., Ts’o, T.Y.: The Evolution of the
Kerberos Authentication Service. Spring 1991 EurOpen
Conf., May 1991.

Kolano, P.Z.: Surfer: An Extensible Pull-Based Framework
for Resource Selection and Ranking. 4th IEEE/ACM Intl.
Symp. on Cluster Computing and the Grid, Apr. 2004.
Kolano, PZ.: A Unified Framework for Periodic,
On-Demand, and User-Specified Software Information. 5th
IEEE/ACM Intl. Wkshp. on Grid Computing, Nov. 2004.
Linux Virtual Server.
http://linuxvirtualserver.org.

Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of
Idle Workstations. 8th IEEE Intl. Conf. of Distributed
Computing Systems, Jun. 1988.

McCullough, M.: Secure Automated File Transfer. ;Login:,
30(4), Aug. 2005.

McKeown, M.: Build WS-Resources with WSRF::Lite. Jan.
2005. Available at
http://www—106.1ibm.com/developerworks/
edu/gr-dw-gr-wsrflite—-i.html.

OpenSSH. http://openssh.org.

Pearlman, L., Welch, V., Foster, 1., Kesselman, C., Tuecke,
S.: The Community Authorization Service: Status and
Future. Conf. for Computing in High Energy and Nuclear
Physics, Mar. 2003.

Portable Batch System. http:

//www.altair.com/software/pbspro.htm.
[24] Provos, N.: Improving Host Security with System Call
Policies. 12th USENIX Security Symp., Aug. 2004.

[25] Riedel, M.: UNICORE Secure Shell Plugin Guide. Oct.
2005. Available at
http://prdownloads.sourceforge.net/
unicore/sshpluginguide_1_0_1.pdf.

[26] Rssh. http://www.pizzashack.org/rssh.

[27] Rsync. http://samba.anu.edu.au/rsync.

[28] Saltzer, J.H., Schroeder, M.D.: The Protection of
Information in Computer Systems. Proc. of the IEEE, vol.
63, num. 9, 1975.

[29] Samar, V.: Unified Login with Pluggable Authentication
Modules. 3rd ACM Conf. on Computer and
Communications Security, Mar. 1996.

[30] Scponly. http://www.sublimation.org/scponly.

[31] SSH Tectia Server. http:
//www.ssh.com/products/client-server.

[32] SSH Usage Profiling. http://openssh.org/usage.

[33] Thain, D.: Identity Boxing: A New Technique for Consistent
Global Identity. ACM/IEEE Supercomputing 2005 Conf.,
Nov. 2005.

[34] Thain, D., Livny, M.: Multiple Bypass: Interposition Agents
for Distributed Computing. J. Cluster Computing, vol. 4,
num. 1, 2001.

[35] Tridgell, A.: Efficient Algorithms for Sorting and
Synchronization. Ph.D. Thesis, Australian National Univ.,
Feb. 1999.

[36] Wahl, M., Kille, S., Howes, T.: Lightweight Directory
Access Protocol (v3): UTF-8 String Representation of
Distinguished Names. IETF RFC 2253, Dec. 1997.

[37] Walters, R.J., Crouch, S.: M-grid: Using Ubiquitous Web
Technologies to Create a Computational Grid. European
Grid Conf., Feb. 2005.

